|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union |
|
|
|
from ..base import DiffusersQuantizer |
|
|
|
|
|
if TYPE_CHECKING: |
|
from ...models.modeling_utils import ModelMixin |
|
|
|
|
|
from ...utils import ( |
|
get_module_from_name, |
|
is_accelerate_available, |
|
is_accelerate_version, |
|
is_gguf_available, |
|
is_gguf_version, |
|
is_torch_available, |
|
logging, |
|
) |
|
|
|
|
|
if is_torch_available() and is_gguf_available(): |
|
import torch |
|
|
|
from .utils import ( |
|
GGML_QUANT_SIZES, |
|
GGUFParameter, |
|
_dequantize_gguf_and_restore_linear, |
|
_quant_shape_from_byte_shape, |
|
_replace_with_gguf_linear, |
|
) |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class GGUFQuantizer(DiffusersQuantizer): |
|
use_keep_in_fp32_modules = True |
|
|
|
def __init__(self, quantization_config, **kwargs): |
|
super().__init__(quantization_config, **kwargs) |
|
|
|
self.compute_dtype = quantization_config.compute_dtype |
|
self.pre_quantized = quantization_config.pre_quantized |
|
self.modules_to_not_convert = quantization_config.modules_to_not_convert |
|
|
|
if not isinstance(self.modules_to_not_convert, list): |
|
self.modules_to_not_convert = [self.modules_to_not_convert] |
|
|
|
def validate_environment(self, *args, **kwargs): |
|
if not is_accelerate_available() or is_accelerate_version("<", "0.26.0"): |
|
raise ImportError( |
|
"Loading GGUF Parameters requires `accelerate` installed in your enviroment: `pip install 'accelerate>=0.26.0'`" |
|
) |
|
if not is_gguf_available() or is_gguf_version("<", "0.10.0"): |
|
raise ImportError( |
|
"To load GGUF format files you must have `gguf` installed in your environment: `pip install gguf>=0.10.0`" |
|
) |
|
|
|
|
|
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: |
|
|
|
max_memory = {key: val * 0.90 for key, val in max_memory.items()} |
|
return max_memory |
|
|
|
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": |
|
if target_dtype != torch.uint8: |
|
logger.info(f"target_dtype {target_dtype} is replaced by `torch.uint8` for GGUF quantization") |
|
return torch.uint8 |
|
|
|
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": |
|
if torch_dtype is None: |
|
torch_dtype = self.compute_dtype |
|
return torch_dtype |
|
|
|
def check_quantized_param_shape(self, param_name, current_param, loaded_param): |
|
loaded_param_shape = loaded_param.shape |
|
current_param_shape = current_param.shape |
|
quant_type = loaded_param.quant_type |
|
|
|
block_size, type_size = GGML_QUANT_SIZES[quant_type] |
|
|
|
inferred_shape = _quant_shape_from_byte_shape(loaded_param_shape, type_size, block_size) |
|
if inferred_shape != current_param_shape: |
|
raise ValueError( |
|
f"{param_name} has an expected quantized shape of: {inferred_shape}, but receieved shape: {loaded_param_shape}" |
|
) |
|
|
|
return True |
|
|
|
def check_if_quantized_param( |
|
self, |
|
model: "ModelMixin", |
|
param_value: Union["GGUFParameter", "torch.Tensor"], |
|
param_name: str, |
|
state_dict: Dict[str, Any], |
|
**kwargs, |
|
) -> bool: |
|
if isinstance(param_value, GGUFParameter): |
|
return True |
|
|
|
return False |
|
|
|
def create_quantized_param( |
|
self, |
|
model: "ModelMixin", |
|
param_value: Union["GGUFParameter", "torch.Tensor"], |
|
param_name: str, |
|
target_device: "torch.device", |
|
state_dict: Optional[Dict[str, Any]] = None, |
|
unexpected_keys: Optional[List[str]] = None, |
|
): |
|
module, tensor_name = get_module_from_name(model, param_name) |
|
if tensor_name not in module._parameters and tensor_name not in module._buffers: |
|
raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.") |
|
|
|
if tensor_name in module._parameters: |
|
module._parameters[tensor_name] = param_value.to(target_device) |
|
if tensor_name in module._buffers: |
|
module._buffers[tensor_name] = param_value.to(target_device) |
|
|
|
def _process_model_before_weight_loading( |
|
self, |
|
model: "ModelMixin", |
|
device_map, |
|
keep_in_fp32_modules: List[str] = [], |
|
**kwargs, |
|
): |
|
state_dict = kwargs.get("state_dict", None) |
|
|
|
self.modules_to_not_convert.extend(keep_in_fp32_modules) |
|
self.modules_to_not_convert = [module for module in self.modules_to_not_convert if module is not None] |
|
|
|
_replace_with_gguf_linear( |
|
model, self.compute_dtype, state_dict, modules_to_not_convert=self.modules_to_not_convert |
|
) |
|
|
|
def _process_model_after_weight_loading(self, model: "ModelMixin", **kwargs): |
|
return model |
|
|
|
@property |
|
def is_serializable(self): |
|
return False |
|
|
|
@property |
|
def is_trainable(self) -> bool: |
|
return False |
|
|
|
def _dequantize(self, model): |
|
is_model_on_cpu = model.device.type == "cpu" |
|
if is_model_on_cpu: |
|
logger.info( |
|
"Model was found to be on CPU (could happen as a result of `enable_model_cpu_offload()`). So, moving it to GPU. After dequantization, will move the model back to CPU again to preserve the previous device." |
|
) |
|
model.to(torch.cuda.current_device()) |
|
|
|
model = _dequantize_gguf_and_restore_linear(model, self.modules_to_not_convert) |
|
if is_model_on_cpu: |
|
model.to("cpu") |
|
return model |
|
|