|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
from contextlib import nullcontext |
|
|
|
import gguf |
|
import torch |
|
import torch.nn as nn |
|
|
|
from ...utils import is_accelerate_available |
|
|
|
|
|
if is_accelerate_available(): |
|
import accelerate |
|
from accelerate import init_empty_weights |
|
from accelerate.hooks import add_hook_to_module, remove_hook_from_module |
|
|
|
|
|
|
|
def _create_accelerate_new_hook(old_hook): |
|
r""" |
|
Creates a new hook based on the old hook. Use it only if you know what you are doing ! This method is a copy of: |
|
https://github.com/huggingface/peft/blob/748f7968f3a31ec06a1c2b0328993319ad9a150a/src/peft/utils/other.py#L245 with |
|
some changes |
|
""" |
|
old_hook_cls = getattr(accelerate.hooks, old_hook.__class__.__name__) |
|
old_hook_attr = old_hook.__dict__ |
|
filtered_old_hook_attr = {} |
|
old_hook_init_signature = inspect.signature(old_hook_cls.__init__) |
|
for k in old_hook_attr.keys(): |
|
if k in old_hook_init_signature.parameters: |
|
filtered_old_hook_attr[k] = old_hook_attr[k] |
|
new_hook = old_hook_cls(**filtered_old_hook_attr) |
|
return new_hook |
|
|
|
|
|
def _replace_with_gguf_linear(model, compute_dtype, state_dict, prefix="", modules_to_not_convert=[]): |
|
def _should_convert_to_gguf(state_dict, prefix): |
|
weight_key = prefix + "weight" |
|
return weight_key in state_dict and isinstance(state_dict[weight_key], GGUFParameter) |
|
|
|
has_children = list(model.children()) |
|
if not has_children: |
|
return |
|
|
|
for name, module in model.named_children(): |
|
module_prefix = prefix + name + "." |
|
_replace_with_gguf_linear(module, compute_dtype, state_dict, module_prefix, modules_to_not_convert) |
|
|
|
if ( |
|
isinstance(module, nn.Linear) |
|
and _should_convert_to_gguf(state_dict, module_prefix) |
|
and name not in modules_to_not_convert |
|
): |
|
ctx = init_empty_weights if is_accelerate_available() else nullcontext |
|
with ctx(): |
|
model._modules[name] = GGUFLinear( |
|
module.in_features, |
|
module.out_features, |
|
module.bias is not None, |
|
compute_dtype=compute_dtype, |
|
) |
|
model._modules[name].source_cls = type(module) |
|
|
|
model._modules[name].requires_grad_(False) |
|
|
|
return model |
|
|
|
|
|
def _dequantize_gguf_and_restore_linear(model, modules_to_not_convert=[]): |
|
for name, module in model.named_children(): |
|
if isinstance(module, GGUFLinear) and name not in modules_to_not_convert: |
|
device = module.weight.device |
|
bias = getattr(module, "bias", None) |
|
|
|
ctx = init_empty_weights if is_accelerate_available() else nullcontext |
|
with ctx(): |
|
new_module = nn.Linear( |
|
module.in_features, |
|
module.out_features, |
|
module.bias is not None, |
|
device=device, |
|
) |
|
new_module.weight = nn.Parameter(dequantize_gguf_tensor(module.weight)) |
|
if bias is not None: |
|
new_module.bias = bias |
|
|
|
|
|
if hasattr(module, "_hf_hook"): |
|
old_hook = module._hf_hook |
|
new_hook = _create_accelerate_new_hook(old_hook) |
|
|
|
remove_hook_from_module(module) |
|
add_hook_to_module(new_module, new_hook) |
|
|
|
new_module.to(device) |
|
model._modules[name] = new_module |
|
|
|
has_children = list(module.children()) |
|
if has_children: |
|
_dequantize_gguf_and_restore_linear(module, modules_to_not_convert) |
|
|
|
return model |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
QK_K = 256 |
|
K_SCALE_SIZE = 12 |
|
|
|
|
|
def to_uint32(x): |
|
x = x.view(torch.uint8).to(torch.int32) |
|
return (x[:, 0] | x[:, 1] << 8 | x[:, 2] << 16 | x[:, 3] << 24).unsqueeze(1) |
|
|
|
|
|
def split_block_dims(blocks, *args): |
|
n_max = blocks.shape[1] |
|
dims = list(args) + [n_max - sum(args)] |
|
return torch.split(blocks, dims, dim=1) |
|
|
|
|
|
def get_scale_min(scales): |
|
n_blocks = scales.shape[0] |
|
scales = scales.view(torch.uint8) |
|
scales = scales.reshape((n_blocks, 3, 4)) |
|
|
|
d, m, m_d = torch.split(scales, scales.shape[-2] // 3, dim=-2) |
|
|
|
sc = torch.cat([d & 0x3F, (m_d & 0x0F) | ((d >> 2) & 0x30)], dim=-1) |
|
min = torch.cat([m & 0x3F, (m_d >> 4) | ((m >> 2) & 0x30)], dim=-1) |
|
|
|
return (sc.reshape((n_blocks, 8)), min.reshape((n_blocks, 8))) |
|
|
|
|
|
def dequantize_blocks_Q8_0(blocks, block_size, type_size, dtype=None): |
|
d, x = split_block_dims(blocks, 2) |
|
d = d.view(torch.float16).to(dtype) |
|
x = x.view(torch.int8) |
|
return d * x |
|
|
|
|
|
def dequantize_blocks_Q5_1(blocks, block_size, type_size, dtype=None): |
|
n_blocks = blocks.shape[0] |
|
|
|
d, m, qh, qs = split_block_dims(blocks, 2, 2, 4) |
|
d = d.view(torch.float16).to(dtype) |
|
m = m.view(torch.float16).to(dtype) |
|
qh = to_uint32(qh) |
|
|
|
qh = qh.reshape((n_blocks, 1)) >> torch.arange(32, device=d.device, dtype=torch.int32).reshape(1, 32) |
|
ql = qs.reshape((n_blocks, -1, 1, block_size // 2)) >> torch.tensor( |
|
[0, 4], device=d.device, dtype=torch.uint8 |
|
).reshape(1, 1, 2, 1) |
|
qh = (qh & 1).to(torch.uint8) |
|
ql = (ql & 0x0F).reshape((n_blocks, -1)) |
|
|
|
qs = ql | (qh << 4) |
|
return (d * qs) + m |
|
|
|
|
|
def dequantize_blocks_Q5_0(blocks, block_size, type_size, dtype=None): |
|
n_blocks = blocks.shape[0] |
|
|
|
d, qh, qs = split_block_dims(blocks, 2, 4) |
|
d = d.view(torch.float16).to(dtype) |
|
qh = to_uint32(qh) |
|
|
|
qh = qh.reshape(n_blocks, 1) >> torch.arange(32, device=d.device, dtype=torch.int32).reshape(1, 32) |
|
ql = qs.reshape(n_blocks, -1, 1, block_size // 2) >> torch.tensor( |
|
[0, 4], device=d.device, dtype=torch.uint8 |
|
).reshape(1, 1, 2, 1) |
|
|
|
qh = (qh & 1).to(torch.uint8) |
|
ql = (ql & 0x0F).reshape(n_blocks, -1) |
|
|
|
qs = (ql | (qh << 4)).to(torch.int8) - 16 |
|
return d * qs |
|
|
|
|
|
def dequantize_blocks_Q4_1(blocks, block_size, type_size, dtype=None): |
|
n_blocks = blocks.shape[0] |
|
|
|
d, m, qs = split_block_dims(blocks, 2, 2) |
|
d = d.view(torch.float16).to(dtype) |
|
m = m.view(torch.float16).to(dtype) |
|
|
|
qs = qs.reshape((n_blocks, -1, 1, block_size // 2)) >> torch.tensor( |
|
[0, 4], device=d.device, dtype=torch.uint8 |
|
).reshape(1, 1, 2, 1) |
|
qs = (qs & 0x0F).reshape(n_blocks, -1) |
|
|
|
return (d * qs) + m |
|
|
|
|
|
def dequantize_blocks_Q4_0(blocks, block_size, type_size, dtype=None): |
|
n_blocks = blocks.shape[0] |
|
|
|
d, qs = split_block_dims(blocks, 2) |
|
d = d.view(torch.float16).to(dtype) |
|
|
|
qs = qs.reshape((n_blocks, -1, 1, block_size // 2)) >> torch.tensor( |
|
[0, 4], device=d.device, dtype=torch.uint8 |
|
).reshape((1, 1, 2, 1)) |
|
qs = (qs & 0x0F).reshape((n_blocks, -1)).to(torch.int8) - 8 |
|
return d * qs |
|
|
|
|
|
def dequantize_blocks_Q6_K(blocks, block_size, type_size, dtype=None): |
|
n_blocks = blocks.shape[0] |
|
|
|
( |
|
ql, |
|
qh, |
|
scales, |
|
d, |
|
) = split_block_dims(blocks, QK_K // 2, QK_K // 4, QK_K // 16) |
|
|
|
scales = scales.view(torch.int8).to(dtype) |
|
d = d.view(torch.float16).to(dtype) |
|
d = (d * scales).reshape((n_blocks, QK_K // 16, 1)) |
|
|
|
ql = ql.reshape((n_blocks, -1, 1, 64)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape( |
|
(1, 1, 2, 1) |
|
) |
|
ql = (ql & 0x0F).reshape((n_blocks, -1, 32)) |
|
qh = qh.reshape((n_blocks, -1, 1, 32)) >> torch.tensor([0, 2, 4, 6], device=d.device, dtype=torch.uint8).reshape( |
|
(1, 1, 4, 1) |
|
) |
|
qh = (qh & 0x03).reshape((n_blocks, -1, 32)) |
|
q = (ql | (qh << 4)).to(torch.int8) - 32 |
|
q = q.reshape((n_blocks, QK_K // 16, -1)) |
|
|
|
return (d * q).reshape((n_blocks, QK_K)) |
|
|
|
|
|
def dequantize_blocks_Q5_K(blocks, block_size, type_size, dtype=None): |
|
n_blocks = blocks.shape[0] |
|
|
|
d, dmin, scales, qh, qs = split_block_dims(blocks, 2, 2, K_SCALE_SIZE, QK_K // 8) |
|
|
|
d = d.view(torch.float16).to(dtype) |
|
dmin = dmin.view(torch.float16).to(dtype) |
|
|
|
sc, m = get_scale_min(scales) |
|
|
|
d = (d * sc).reshape((n_blocks, -1, 1)) |
|
dm = (dmin * m).reshape((n_blocks, -1, 1)) |
|
|
|
ql = qs.reshape((n_blocks, -1, 1, 32)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape( |
|
(1, 1, 2, 1) |
|
) |
|
qh = qh.reshape((n_blocks, -1, 1, 32)) >> torch.arange(0, 8, device=d.device, dtype=torch.uint8).reshape( |
|
(1, 1, 8, 1) |
|
) |
|
ql = (ql & 0x0F).reshape((n_blocks, -1, 32)) |
|
qh = (qh & 0x01).reshape((n_blocks, -1, 32)) |
|
q = ql | (qh << 4) |
|
|
|
return (d * q - dm).reshape((n_blocks, QK_K)) |
|
|
|
|
|
def dequantize_blocks_Q4_K(blocks, block_size, type_size, dtype=None): |
|
n_blocks = blocks.shape[0] |
|
|
|
d, dmin, scales, qs = split_block_dims(blocks, 2, 2, K_SCALE_SIZE) |
|
d = d.view(torch.float16).to(dtype) |
|
dmin = dmin.view(torch.float16).to(dtype) |
|
|
|
sc, m = get_scale_min(scales) |
|
|
|
d = (d * sc).reshape((n_blocks, -1, 1)) |
|
dm = (dmin * m).reshape((n_blocks, -1, 1)) |
|
|
|
qs = qs.reshape((n_blocks, -1, 1, 32)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape( |
|
(1, 1, 2, 1) |
|
) |
|
qs = (qs & 0x0F).reshape((n_blocks, -1, 32)) |
|
|
|
return (d * qs - dm).reshape((n_blocks, QK_K)) |
|
|
|
|
|
def dequantize_blocks_Q3_K(blocks, block_size, type_size, dtype=None): |
|
n_blocks = blocks.shape[0] |
|
|
|
hmask, qs, scales, d = split_block_dims(blocks, QK_K // 8, QK_K // 4, 12) |
|
d = d.view(torch.float16).to(dtype) |
|
|
|
lscales, hscales = scales[:, :8], scales[:, 8:] |
|
lscales = lscales.reshape((n_blocks, 1, 8)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape( |
|
(1, 2, 1) |
|
) |
|
lscales = lscales.reshape((n_blocks, 16)) |
|
hscales = hscales.reshape((n_blocks, 1, 4)) >> torch.tensor( |
|
[0, 2, 4, 6], device=d.device, dtype=torch.uint8 |
|
).reshape((1, 4, 1)) |
|
hscales = hscales.reshape((n_blocks, 16)) |
|
scales = (lscales & 0x0F) | ((hscales & 0x03) << 4) |
|
scales = scales.to(torch.int8) - 32 |
|
|
|
dl = (d * scales).reshape((n_blocks, 16, 1)) |
|
|
|
ql = qs.reshape((n_blocks, -1, 1, 32)) >> torch.tensor([0, 2, 4, 6], device=d.device, dtype=torch.uint8).reshape( |
|
(1, 1, 4, 1) |
|
) |
|
qh = hmask.reshape(n_blocks, -1, 1, 32) >> torch.arange(0, 8, device=d.device, dtype=torch.uint8).reshape( |
|
(1, 1, 8, 1) |
|
) |
|
ql = ql.reshape((n_blocks, 16, QK_K // 16)) & 3 |
|
qh = (qh.reshape((n_blocks, 16, QK_K // 16)) & 1) ^ 1 |
|
q = ql.to(torch.int8) - (qh << 2).to(torch.int8) |
|
|
|
return (dl * q).reshape((n_blocks, QK_K)) |
|
|
|
|
|
def dequantize_blocks_Q2_K(blocks, block_size, type_size, dtype=None): |
|
n_blocks = blocks.shape[0] |
|
|
|
scales, qs, d, dmin = split_block_dims(blocks, QK_K // 16, QK_K // 4, 2) |
|
d = d.view(torch.float16).to(dtype) |
|
dmin = dmin.view(torch.float16).to(dtype) |
|
|
|
|
|
dl = (d * (scales & 0xF)).reshape((n_blocks, QK_K // 16, 1)) |
|
ml = (dmin * (scales >> 4)).reshape((n_blocks, QK_K // 16, 1)) |
|
|
|
shift = torch.tensor([0, 2, 4, 6], device=d.device, dtype=torch.uint8).reshape((1, 1, 4, 1)) |
|
|
|
qs = (qs.reshape((n_blocks, -1, 1, 32)) >> shift) & 3 |
|
qs = qs.reshape((n_blocks, QK_K // 16, 16)) |
|
qs = dl * qs - ml |
|
|
|
return qs.reshape((n_blocks, -1)) |
|
|
|
|
|
def dequantize_blocks_BF16(blocks, block_size, type_size, dtype=None): |
|
return (blocks.view(torch.int16).to(torch.int32) << 16).view(torch.float32) |
|
|
|
|
|
GGML_QUANT_SIZES = gguf.GGML_QUANT_SIZES |
|
dequantize_functions = { |
|
gguf.GGMLQuantizationType.BF16: dequantize_blocks_BF16, |
|
gguf.GGMLQuantizationType.Q8_0: dequantize_blocks_Q8_0, |
|
gguf.GGMLQuantizationType.Q5_1: dequantize_blocks_Q5_1, |
|
gguf.GGMLQuantizationType.Q5_0: dequantize_blocks_Q5_0, |
|
gguf.GGMLQuantizationType.Q4_1: dequantize_blocks_Q4_1, |
|
gguf.GGMLQuantizationType.Q4_0: dequantize_blocks_Q4_0, |
|
gguf.GGMLQuantizationType.Q6_K: dequantize_blocks_Q6_K, |
|
gguf.GGMLQuantizationType.Q5_K: dequantize_blocks_Q5_K, |
|
gguf.GGMLQuantizationType.Q4_K: dequantize_blocks_Q4_K, |
|
gguf.GGMLQuantizationType.Q3_K: dequantize_blocks_Q3_K, |
|
gguf.GGMLQuantizationType.Q2_K: dequantize_blocks_Q2_K, |
|
} |
|
SUPPORTED_GGUF_QUANT_TYPES = list(dequantize_functions.keys()) |
|
|
|
|
|
def _quant_shape_from_byte_shape(shape, type_size, block_size): |
|
return (*shape[:-1], shape[-1] // type_size * block_size) |
|
|
|
|
|
def dequantize_gguf_tensor(tensor): |
|
if not hasattr(tensor, "quant_type"): |
|
return tensor |
|
|
|
quant_type = tensor.quant_type |
|
dequant_fn = dequantize_functions[quant_type] |
|
|
|
block_size, type_size = GGML_QUANT_SIZES[quant_type] |
|
|
|
tensor = tensor.view(torch.uint8) |
|
shape = _quant_shape_from_byte_shape(tensor.shape, type_size, block_size) |
|
|
|
n_blocks = tensor.numel() // type_size |
|
blocks = tensor.reshape((n_blocks, type_size)) |
|
|
|
dequant = dequant_fn(blocks, block_size, type_size) |
|
dequant = dequant.reshape(shape) |
|
|
|
return dequant.as_tensor() |
|
|
|
|
|
class GGUFParameter(torch.nn.Parameter): |
|
def __new__(cls, data, requires_grad=False, quant_type=None): |
|
data = data if data is not None else torch.empty(0) |
|
self = torch.Tensor._make_subclass(cls, data, requires_grad) |
|
self.quant_type = quant_type |
|
|
|
return self |
|
|
|
def as_tensor(self): |
|
return torch.Tensor._make_subclass(torch.Tensor, self, self.requires_grad) |
|
|
|
@classmethod |
|
def __torch_function__(cls, func, types, args=(), kwargs=None): |
|
if kwargs is None: |
|
kwargs = {} |
|
|
|
result = super().__torch_function__(func, types, args, kwargs) |
|
|
|
|
|
|
|
|
|
quant_type = None |
|
for arg in args: |
|
if isinstance(arg, list) and (arg[0], GGUFParameter): |
|
quant_type = arg[0].quant_type |
|
break |
|
if isinstance(arg, GGUFParameter): |
|
quant_type = arg.quant_type |
|
break |
|
if isinstance(result, torch.Tensor): |
|
return cls(result, quant_type=quant_type) |
|
|
|
elif isinstance(result, (tuple, list)): |
|
|
|
wrapped = [cls(x, quant_type=quant_type) if isinstance(x, torch.Tensor) else x for x in result] |
|
return type(result)(wrapped) |
|
else: |
|
return result |
|
|
|
|
|
class GGUFLinear(nn.Linear): |
|
def __init__( |
|
self, |
|
in_features, |
|
out_features, |
|
bias=False, |
|
compute_dtype=None, |
|
device=None, |
|
) -> None: |
|
super().__init__(in_features, out_features, bias, device) |
|
self.compute_dtype = compute_dtype |
|
|
|
def forward(self, inputs): |
|
weight = dequantize_gguf_tensor(self.weight) |
|
weight = weight.to(self.compute_dtype) |
|
bias = self.bias.to(self.compute_dtype) |
|
|
|
output = torch.nn.functional.linear(inputs, weight, bias) |
|
return output |
|
|