|
import gradio as gr |
|
from transformers import AutoProcessor, AutoModelForVision2Seq |
|
import torch |
|
|
|
class DeepSeekVL: |
|
def __init__(self, model_path="deepseek-ai/deepseek-vl-7b", device="cpu"): |
|
self.device = device |
|
self.processor = AutoProcessor.from_pretrained(model_path) |
|
self.model = AutoModelForVision2Seq.from_pretrained( |
|
model_path, |
|
torch_dtype=torch.float32 |
|
).to(device) |
|
|
|
def generate(self, image, question, max_new_tokens=128): |
|
inputs = self.processor(text=question, images=image, return_tensors="pt").to(self.device) |
|
with torch.no_grad(): |
|
output_ids = self.model.generate(**inputs, max_new_tokens=max_new_tokens) |
|
return self.processor.batch_decode(output_ids, skip_special_tokens=True)[0] |
|
|
|
|
|
model = DeepSeekVL(model_path="deepseek-ai/deepseek-vl-7b", device="cpu") |
|
|
|
def qa(image, question): |
|
|
|
return model.generate(image, question) |
|
|
|
demo = gr.Interface( |
|
fn=qa, |
|
inputs=[ |
|
gr.Image(type="pil", label="Upload Image"), |
|
gr.Textbox(label="Enter your question") |
|
], |
|
outputs="text", |
|
title="DeepSeek-VL Multimodal QA Demo", |
|
description="Upload an image and enter a question. Experience DeepSeek-VL's vision-language capabilities." |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |