|
import gradio as gr |
|
from deepseek_vl.models import VLChatProcessor, MultiModalityCausalLM |
|
from deepseek_vl.utils.io import load_pil_images |
|
import torch |
|
|
|
model_path = "deepseek-ai/deepseek-vl-1.3b-chat" |
|
|
|
|
|
vl_chat_processor = VLChatProcessor.from_pretrained(model_path) |
|
tokenizer = vl_chat_processor.tokenizer |
|
vl_gpt = MultiModalityCausalLM.from_pretrained(model_path, trust_remote_code=True).to("cpu") |
|
|
|
def qa(image, question): |
|
conversation = [ |
|
{"role": "User", "content": "<image_placeholder>" + question, "images": [image]}, |
|
{"role": "Assistant", "content": ""} |
|
] |
|
pil_images = load_pil_images(conversation) |
|
prepare_inputs = vl_chat_processor( |
|
conversations=conversation, |
|
images=pil_images, |
|
force_batchify=True |
|
).to("cpu") |
|
|
|
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs) |
|
outputs = vl_gpt.language_model.generate( |
|
inputs_embeds=inputs_embeds, |
|
attention_mask=prepare_inputs.attention_mask, |
|
pad_token_id=tokenizer.eos_token_id, |
|
bos_token_id=tokenizer.bos_token_id, |
|
eos_token_id=tokenizer.eos_token_id, |
|
max_new_tokens=256, |
|
do_sample=False, |
|
use_cache=True |
|
) |
|
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True) |
|
return answer |
|
|
|
demo = gr.Interface( |
|
fn=qa, |
|
inputs=[gr.Image(type="pil", label="Upload Image"), gr.Textbox(label="Enter your question")], |
|
outputs="text", |
|
title="DeepSeek-VL Multimodal QA Demo", |
|
description="Upload an image and enter a question. Experience DeepSeek-VL's vision-language capabilities." |
|
) |
|
|
|
if __name__ == "__main__": |
|
|
|
demo.queue(concurrency_count=1, max_size=8).launch() |