import gradio as gr from deepseek_vl.models import VLChatProcessor, MultiModalityCausalLM from deepseek_vl.utils.io import load_pil_images import torch model_path = "deepseek-ai/deepseek-vl-1.3b-chat" vl_chat_processor = VLChatProcessor.from_pretrained(model_path) tokenizer = vl_chat_processor.tokenizer vl_gpt = MultiModalityCausalLM.from_pretrained(model_path, trust_remote_code=True).to("cpu") def qa(image, question): conversation = [ {"role": "User", "content": "" + question, "images": [image]}, {"role": "Assistant", "content": ""} ] pil_images = load_pil_images(conversation) prepare_inputs = vl_chat_processor( conversations=conversation, images=pil_images, force_batchify=True ).to("cpu") inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs) outputs = vl_gpt.language_model.generate( inputs_embeds=inputs_embeds, attention_mask=prepare_inputs.attention_mask, pad_token_id=tokenizer.eos_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id, max_new_tokens=512, do_sample=False, use_cache=True ) answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True) return answer demo = gr.Interface( fn=qa, inputs=[gr.Image(type="pil", label="Upload Image"), gr.Textbox(label="Enter your question")], outputs="text", title="DeepSeek-VL Multimodal QA Demo", description="Upload an image and enter a question. Experience DeepSeek-VL's vision-language capabilities." ) demo.launch()