Spaces:
Build error
Build error
| from lib.renderer.mesh import load_fit_body | |
| from lib.dataset.hoppeMesh import HoppeMesh | |
| from lib.dataset.body_model import TetraSMPLModel | |
| from lib.common.render import Render | |
| from lib.dataset.mesh_util import SMPLX, projection, cal_sdf_batch, get_visibility | |
| from lib.pare.pare.utils.geometry import rotation_matrix_to_angle_axis | |
| from termcolor import colored | |
| import os.path as osp | |
| import numpy as np | |
| from PIL import Image | |
| import random | |
| import os | |
| import trimesh | |
| import torch | |
| from kaolin.ops.mesh import check_sign | |
| import torchvision.transforms as transforms | |
| from huggingface_hub import hf_hub_download, cached_download | |
| class PIFuDataset(): | |
| def __init__(self, cfg, split='train', vis=False): | |
| self.split = split | |
| self.root = cfg.root | |
| self.bsize = cfg.batch_size | |
| self.overfit = cfg.overfit | |
| # for debug, only used in visualize_sampling3D | |
| self.vis = vis | |
| self.opt = cfg.dataset | |
| self.datasets = self.opt.types | |
| self.input_size = self.opt.input_size | |
| self.scales = self.opt.scales | |
| self.workers = cfg.num_threads | |
| self.prior_type = cfg.net.prior_type | |
| self.noise_type = self.opt.noise_type | |
| self.noise_scale = self.opt.noise_scale | |
| noise_joints = [4, 5, 7, 8, 13, 14, 16, 17, 18, 19, 20, 21] | |
| self.noise_smpl_idx = [] | |
| self.noise_smplx_idx = [] | |
| for idx in noise_joints: | |
| self.noise_smpl_idx.append(idx * 3) | |
| self.noise_smpl_idx.append(idx * 3 + 1) | |
| self.noise_smpl_idx.append(idx * 3 + 2) | |
| self.noise_smplx_idx.append((idx-1) * 3) | |
| self.noise_smplx_idx.append((idx-1) * 3 + 1) | |
| self.noise_smplx_idx.append((idx-1) * 3 + 2) | |
| self.use_sdf = cfg.sdf | |
| self.sdf_clip = cfg.sdf_clip | |
| # [(feat_name, channel_num),...] | |
| self.in_geo = [item[0] for item in cfg.net.in_geo] | |
| self.in_nml = [item[0] for item in cfg.net.in_nml] | |
| self.in_geo_dim = [item[1] for item in cfg.net.in_geo] | |
| self.in_nml_dim = [item[1] for item in cfg.net.in_nml] | |
| self.in_total = self.in_geo + self.in_nml | |
| self.in_total_dim = self.in_geo_dim + self.in_nml_dim | |
| if self.split == 'train': | |
| self.rotations = np.arange( | |
| 0, 360, 360 / self.opt.rotation_num).astype(np.int32) | |
| else: | |
| self.rotations = range(0, 360, 120) | |
| self.datasets_dict = {} | |
| for dataset_id, dataset in enumerate(self.datasets): | |
| mesh_dir = None | |
| smplx_dir = None | |
| dataset_dir = osp.join(self.root, dataset) | |
| if dataset in ['thuman2']: | |
| mesh_dir = osp.join(dataset_dir, "scans") | |
| smplx_dir = osp.join(dataset_dir, "fits") | |
| smpl_dir = osp.join(dataset_dir, "smpl") | |
| self.datasets_dict[dataset] = { | |
| "subjects": np.loadtxt(osp.join(dataset_dir, "all.txt"), dtype=str), | |
| "smplx_dir": smplx_dir, | |
| "smpl_dir": smpl_dir, | |
| "mesh_dir": mesh_dir, | |
| "scale": self.scales[dataset_id] | |
| } | |
| self.subject_list = self.get_subject_list(split) | |
| self.smplx = SMPLX() | |
| # PIL to tensor | |
| self.image_to_tensor = transforms.Compose([ | |
| transforms.Resize(self.input_size), | |
| transforms.ToTensor(), | |
| transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) | |
| ]) | |
| # PIL to tensor | |
| self.mask_to_tensor = transforms.Compose([ | |
| transforms.Resize(self.input_size), | |
| transforms.ToTensor(), | |
| transforms.Normalize((0.0, ), (1.0, )) | |
| ]) | |
| self.device = torch.device(f"cuda:{cfg.gpus[0]}") | |
| self.render = Render(size=512, device=self.device) | |
| def render_normal(self, verts, faces): | |
| # render optimized mesh (normal, T_normal, image [-1,1]) | |
| self.render.load_meshes(verts, faces) | |
| return self.render.get_rgb_image() | |
| def get_subject_list(self, split): | |
| subject_list = [] | |
| for dataset in self.datasets: | |
| split_txt = osp.join(self.root, dataset, f'{split}.txt') | |
| if osp.exists(split_txt): | |
| print(f"load from {split_txt}") | |
| subject_list += np.loadtxt(split_txt, dtype=str).tolist() | |
| else: | |
| full_txt = osp.join(self.root, dataset, 'all.txt') | |
| print(f"split {full_txt} into train/val/test") | |
| full_lst = np.loadtxt(full_txt, dtype=str) | |
| full_lst = [dataset+"/"+item for item in full_lst] | |
| [train_lst, test_lst, val_lst] = np.split( | |
| full_lst, [500, 500+5, ]) | |
| np.savetxt(full_txt.replace( | |
| "all", "train"), train_lst, fmt="%s") | |
| np.savetxt(full_txt.replace("all", "test"), test_lst, fmt="%s") | |
| np.savetxt(full_txt.replace("all", "val"), val_lst, fmt="%s") | |
| print(f"load from {split_txt}") | |
| subject_list += np.loadtxt(split_txt, dtype=str).tolist() | |
| if self.split != 'test': | |
| subject_list += subject_list[:self.bsize - | |
| len(subject_list) % self.bsize] | |
| print(colored(f"total: {len(subject_list)}", "yellow")) | |
| random.shuffle(subject_list) | |
| # subject_list = ["thuman2/0008"] | |
| return subject_list | |
| def __len__(self): | |
| return len(self.subject_list) * len(self.rotations) | |
| def __getitem__(self, index): | |
| # only pick the first data if overfitting | |
| if self.overfit: | |
| index = 0 | |
| rid = index % len(self.rotations) | |
| mid = index // len(self.rotations) | |
| rotation = self.rotations[rid] | |
| subject = self.subject_list[mid].split("/")[1] | |
| dataset = self.subject_list[mid].split("/")[0] | |
| render_folder = "/".join([dataset + | |
| f"_{self.opt.rotation_num}views", subject]) | |
| # setup paths | |
| data_dict = { | |
| 'dataset': dataset, | |
| 'subject': subject, | |
| 'rotation': rotation, | |
| 'scale': self.datasets_dict[dataset]["scale"], | |
| 'mesh_path': osp.join(self.datasets_dict[dataset]["mesh_dir"], f"{subject}/{subject}.obj"), | |
| 'smplx_path': osp.join(self.datasets_dict[dataset]["smplx_dir"], f"{subject}/smplx_param.pkl"), | |
| 'smpl_path': osp.join(self.datasets_dict[dataset]["smpl_dir"], f"{subject}.pkl"), | |
| 'calib_path': osp.join(self.root, render_folder, 'calib', f'{rotation:03d}.txt'), | |
| 'vis_path': osp.join(self.root, render_folder, 'vis', f'{rotation:03d}.pt'), | |
| 'image_path': osp.join(self.root, render_folder, 'render', f'{rotation:03d}.png') | |
| } | |
| # load training data | |
| data_dict.update(self.load_calib(data_dict)) | |
| # image/normal/depth loader | |
| for name, channel in zip(self.in_total, self.in_total_dim): | |
| if f'{name}_path' not in data_dict.keys(): | |
| data_dict.update({ | |
| f'{name}_path': osp.join(self.root, render_folder, name, f'{rotation:03d}.png') | |
| }) | |
| # tensor update | |
| data_dict.update({ | |
| name: self.imagepath2tensor( | |
| data_dict[f'{name}_path'], channel, inv=False) | |
| }) | |
| data_dict.update(self.load_mesh(data_dict)) | |
| data_dict.update(self.get_sampling_geo( | |
| data_dict, is_valid=self.split == "val", is_sdf=self.use_sdf)) | |
| data_dict.update(self.load_smpl(data_dict, self.vis)) | |
| if self.prior_type == 'pamir': | |
| data_dict.update(self.load_smpl_voxel(data_dict)) | |
| if (self.split != 'test') and (not self.vis): | |
| del data_dict['verts'] | |
| del data_dict['faces'] | |
| if not self.vis: | |
| del data_dict['mesh'] | |
| path_keys = [ | |
| key for key in data_dict.keys() if '_path' in key or '_dir' in key | |
| ] | |
| for key in path_keys: | |
| del data_dict[key] | |
| return data_dict | |
| def imagepath2tensor(self, path, channel=3, inv=False): | |
| rgba = Image.open(path).convert('RGBA') | |
| mask = rgba.split()[-1] | |
| image = rgba.convert('RGB') | |
| image = self.image_to_tensor(image) | |
| mask = self.mask_to_tensor(mask) | |
| image = (image * mask)[:channel] | |
| return (image * (0.5 - inv) * 2.0).float() | |
| def load_calib(self, data_dict): | |
| calib_data = np.loadtxt(data_dict['calib_path'], dtype=float) | |
| extrinsic = calib_data[:4, :4] | |
| intrinsic = calib_data[4:8, :4] | |
| calib_mat = np.matmul(intrinsic, extrinsic) | |
| calib_mat = torch.from_numpy(calib_mat).float() | |
| return {'calib': calib_mat} | |
| def load_mesh(self, data_dict): | |
| mesh_path = data_dict['mesh_path'] | |
| scale = data_dict['scale'] | |
| mesh_ori = trimesh.load(mesh_path, | |
| skip_materials=True, | |
| process=False, | |
| maintain_order=True) | |
| verts = mesh_ori.vertices * scale | |
| faces = mesh_ori.faces | |
| vert_normals = np.array(mesh_ori.vertex_normals) | |
| face_normals = np.array(mesh_ori.face_normals) | |
| mesh = HoppeMesh(verts, faces, vert_normals, face_normals) | |
| return { | |
| 'mesh': mesh, | |
| 'verts': torch.as_tensor(mesh.verts).float(), | |
| 'faces': torch.as_tensor(mesh.faces).long() | |
| } | |
| def add_noise(self, | |
| beta_num, | |
| smpl_pose, | |
| smpl_betas, | |
| noise_type, | |
| noise_scale, | |
| type, | |
| hashcode): | |
| np.random.seed(hashcode) | |
| if type == 'smplx': | |
| noise_idx = self.noise_smplx_idx | |
| else: | |
| noise_idx = self.noise_smpl_idx | |
| if 'beta' in noise_type and noise_scale[noise_type.index("beta")] > 0.0: | |
| smpl_betas += (np.random.rand(beta_num) - | |
| 0.5) * 2.0 * noise_scale[noise_type.index("beta")] | |
| smpl_betas = smpl_betas.astype(np.float32) | |
| if 'pose' in noise_type and noise_scale[noise_type.index("pose")] > 0.0: | |
| smpl_pose[noise_idx] += ( | |
| np.random.rand(len(noise_idx)) - | |
| 0.5) * 2.0 * np.pi * noise_scale[noise_type.index("pose")] | |
| smpl_pose = smpl_pose.astype(np.float32) | |
| if type == 'smplx': | |
| return torch.as_tensor(smpl_pose[None, ...]), torch.as_tensor(smpl_betas[None, ...]) | |
| else: | |
| return smpl_pose, smpl_betas | |
| def compute_smpl_verts(self, data_dict, noise_type=None, noise_scale=None): | |
| dataset = data_dict['dataset'] | |
| smplx_dict = {} | |
| smplx_param = np.load(data_dict['smplx_path'], allow_pickle=True) | |
| smplx_pose = smplx_param["body_pose"] # [1,63] | |
| smplx_betas = smplx_param["betas"] # [1,10] | |
| smplx_pose, smplx_betas = self.add_noise( | |
| smplx_betas.shape[1], | |
| smplx_pose[0], | |
| smplx_betas[0], | |
| noise_type, | |
| noise_scale, | |
| type='smplx', | |
| hashcode=(hash(f"{data_dict['subject']}_{data_dict['rotation']}")) % (10**8)) | |
| smplx_out, _ = load_fit_body(fitted_path=data_dict['smplx_path'], | |
| scale=self.datasets_dict[dataset]['scale'], | |
| smpl_type='smplx', | |
| smpl_gender='male', | |
| noise_dict=dict(betas=smplx_betas, body_pose=smplx_pose)) | |
| smplx_dict.update({"type": "smplx", | |
| "gender": 'male', | |
| "body_pose": torch.as_tensor(smplx_pose), | |
| "betas": torch.as_tensor(smplx_betas)}) | |
| return smplx_out.vertices, smplx_dict | |
| def compute_voxel_verts(self, | |
| data_dict, | |
| noise_type=None, | |
| noise_scale=None): | |
| smpl_param = np.load(data_dict['smpl_path'], allow_pickle=True) | |
| smplx_param = np.load(data_dict['smplx_path'], allow_pickle=True) | |
| smpl_pose = rotation_matrix_to_angle_axis( | |
| torch.as_tensor(smpl_param['full_pose'][0])).numpy() | |
| smpl_betas = smpl_param["betas"] | |
| smpl_path = cached_download(osp.join(self.smplx.model_dir, "smpl/SMPL_MALE.pkl"), use_auth_token=os.environ['ICON']) | |
| tetra_path = cached_download(osp.join(self.smplx.tedra_dir, | |
| "tetra_male_adult_smpl.npz"), use_auth_token=os.environ['ICON']) | |
| smpl_model = TetraSMPLModel(smpl_path, tetra_path, 'adult') | |
| smpl_pose, smpl_betas = self.add_noise( | |
| smpl_model.beta_shape[0], | |
| smpl_pose.flatten(), | |
| smpl_betas[0], | |
| noise_type, | |
| noise_scale, | |
| type='smpl', | |
| hashcode=(hash(f"{data_dict['subject']}_{data_dict['rotation']}")) % (10**8)) | |
| smpl_model.set_params(pose=smpl_pose.reshape(-1, 3), | |
| beta=smpl_betas, | |
| trans=smpl_param["transl"]) | |
| verts = (np.concatenate([smpl_model.verts, smpl_model.verts_added], | |
| axis=0) * smplx_param["scale"] + smplx_param["translation"] | |
| ) * self.datasets_dict[data_dict['dataset']]['scale'] | |
| faces = np.loadtxt(cached_download(osp.join(self.smplx.tedra_dir, "tetrahedrons_male_adult.txt"), use_auth_token=os.environ['ICON']), | |
| dtype=np.int32) - 1 | |
| pad_v_num = int(8000 - verts.shape[0]) | |
| pad_f_num = int(25100 - faces.shape[0]) | |
| verts = np.pad(verts, ((0, pad_v_num), (0, 0)), | |
| mode='constant', | |
| constant_values=0.0).astype(np.float32) | |
| faces = np.pad(faces, ((0, pad_f_num), (0, 0)), | |
| mode='constant', | |
| constant_values=0.0).astype(np.int32) | |
| return verts, faces, pad_v_num, pad_f_num | |
| def load_smpl(self, data_dict, vis=False): | |
| smplx_verts, smplx_dict = self.compute_smpl_verts( | |
| data_dict, self.noise_type, | |
| self.noise_scale) # compute using smpl model | |
| smplx_verts = projection(smplx_verts, data_dict['calib']).float() | |
| smplx_faces = torch.as_tensor(self.smplx.faces).long() | |
| smplx_vis = torch.load(data_dict['vis_path']).float() | |
| smplx_cmap = torch.as_tensor( | |
| np.load(self.smplx.cmap_vert_path)).float() | |
| # get smpl_signs | |
| query_points = projection(data_dict['samples_geo'], | |
| data_dict['calib']).float() | |
| pts_signs = 2.0 * (check_sign(smplx_verts.unsqueeze(0), | |
| smplx_faces, | |
| query_points.unsqueeze(0)).float() - 0.5).squeeze(0) | |
| return_dict = { | |
| 'smpl_verts': smplx_verts, | |
| 'smpl_faces': smplx_faces, | |
| 'smpl_vis': smplx_vis, | |
| 'smpl_cmap': smplx_cmap, | |
| 'pts_signs': pts_signs | |
| } | |
| if smplx_dict is not None: | |
| return_dict.update(smplx_dict) | |
| if vis: | |
| (xy, z) = torch.as_tensor(smplx_verts).to( | |
| self.device).split([2, 1], dim=1) | |
| smplx_vis = get_visibility(xy, z, torch.as_tensor( | |
| smplx_faces).to(self.device).long()) | |
| T_normal_F, T_normal_B = self.render_normal( | |
| (smplx_verts*torch.tensor([1.0, -1.0, 1.0])).to(self.device), | |
| smplx_faces.to(self.device)) | |
| return_dict.update({"T_normal_F": T_normal_F.squeeze(0), | |
| "T_normal_B": T_normal_B.squeeze(0)}) | |
| query_points = projection(data_dict['samples_geo'], | |
| data_dict['calib']).float() | |
| smplx_sdf, smplx_norm, smplx_cmap, smplx_vis = cal_sdf_batch( | |
| smplx_verts.unsqueeze(0).to(self.device), | |
| smplx_faces.unsqueeze(0).to(self.device), | |
| smplx_cmap.unsqueeze(0).to(self.device), | |
| smplx_vis.unsqueeze(0).to(self.device), | |
| query_points.unsqueeze(0).contiguous().to(self.device)) | |
| return_dict.update({ | |
| 'smpl_feat': | |
| torch.cat( | |
| (smplx_sdf[0].detach().cpu(), | |
| smplx_cmap[0].detach().cpu(), | |
| smplx_norm[0].detach().cpu(), | |
| smplx_vis[0].detach().cpu()), | |
| dim=1) | |
| }) | |
| return return_dict | |
| def load_smpl_voxel(self, data_dict): | |
| smpl_verts, smpl_faces, pad_v_num, pad_f_num = self.compute_voxel_verts( | |
| data_dict, self.noise_type, | |
| self.noise_scale) # compute using smpl model | |
| smpl_verts = projection(smpl_verts, data_dict['calib']) | |
| smpl_verts *= 0.5 | |
| return { | |
| 'voxel_verts': smpl_verts, | |
| 'voxel_faces': smpl_faces, | |
| 'pad_v_num': pad_v_num, | |
| 'pad_f_num': pad_f_num | |
| } | |
| def get_sampling_geo(self, data_dict, is_valid=False, is_sdf=False): | |
| mesh = data_dict['mesh'] | |
| calib = data_dict['calib'] | |
| # Samples are around the true surface with an offset | |
| n_samples_surface = 4 * self.opt.num_sample_geo | |
| vert_ids = np.arange(mesh.verts.shape[0]) | |
| thickness_sample_ratio = np.ones_like(vert_ids).astype(np.float32) | |
| thickness_sample_ratio /= thickness_sample_ratio.sum() | |
| samples_surface_ids = np.random.choice(vert_ids, | |
| n_samples_surface, | |
| replace=True, | |
| p=thickness_sample_ratio) | |
| samples_normal_ids = np.random.choice(vert_ids, | |
| self.opt.num_sample_geo // 2, | |
| replace=False, | |
| p=thickness_sample_ratio) | |
| surf_samples = mesh.verts[samples_normal_ids, :] | |
| surf_normals = mesh.vert_normals[samples_normal_ids, :] | |
| samples_surface = mesh.verts[samples_surface_ids, :] | |
| # Sampling offsets are random noise with constant scale (15cm - 20cm) | |
| offset = np.random.normal(scale=self.opt.sigma_geo, | |
| size=(n_samples_surface, 1)) | |
| samples_surface += mesh.vert_normals[samples_surface_ids, :] * offset | |
| # Uniform samples in [-1, 1] | |
| calib_inv = np.linalg.inv(calib) | |
| n_samples_space = self.opt.num_sample_geo // 4 | |
| samples_space_img = 2.0 * np.random.rand(n_samples_space, 3) - 1.0 | |
| samples_space = projection(samples_space_img, calib_inv) | |
| # z-ray direction samples | |
| if self.opt.zray_type and not is_valid: | |
| n_samples_rayz = self.opt.ray_sample_num | |
| samples_surface_cube = projection(samples_surface, calib) | |
| samples_surface_cube_repeat = np.repeat(samples_surface_cube, | |
| n_samples_rayz, | |
| axis=0) | |
| thickness_repeat = np.repeat(0.5 * | |
| np.ones_like(samples_surface_ids), | |
| n_samples_rayz, | |
| axis=0) | |
| noise_repeat = np.random.normal(scale=0.40, | |
| size=(n_samples_surface * | |
| n_samples_rayz, )) | |
| samples_surface_cube_repeat[:, | |
| -1] += thickness_repeat * noise_repeat | |
| samples_surface_rayz = projection(samples_surface_cube_repeat, | |
| calib_inv) | |
| samples = np.concatenate( | |
| [samples_surface, samples_space, samples_surface_rayz], 0) | |
| else: | |
| samples = np.concatenate([samples_surface, samples_space], 0) | |
| np.random.shuffle(samples) | |
| # labels: in->1.0; out->0.0. | |
| if is_sdf: | |
| sdfs = mesh.get_sdf(samples) | |
| inside_samples = samples[sdfs < 0] | |
| outside_samples = samples[sdfs >= 0] | |
| inside_sdfs = sdfs[sdfs < 0] | |
| outside_sdfs = sdfs[sdfs >= 0] | |
| else: | |
| inside = mesh.contains(samples) | |
| inside_samples = samples[inside >= 0.5] | |
| outside_samples = samples[inside < 0.5] | |
| nin = inside_samples.shape[0] | |
| if nin > self.opt.num_sample_geo // 2: | |
| inside_samples = inside_samples[:self.opt.num_sample_geo // 2] | |
| outside_samples = outside_samples[:self.opt.num_sample_geo // 2] | |
| if is_sdf: | |
| inside_sdfs = inside_sdfs[:self.opt.num_sample_geo // 2] | |
| outside_sdfs = outside_sdfs[:self.opt.num_sample_geo // 2] | |
| else: | |
| outside_samples = outside_samples[:(self.opt.num_sample_geo - nin)] | |
| if is_sdf: | |
| outside_sdfs = outside_sdfs[:(self.opt.num_sample_geo - nin)] | |
| if is_sdf: | |
| samples = np.concatenate( | |
| [inside_samples, outside_samples, surf_samples], 0) | |
| labels = np.concatenate([ | |
| inside_sdfs, outside_sdfs, 0.0 * np.ones(surf_samples.shape[0]) | |
| ]) | |
| normals = np.zeros_like(samples) | |
| normals[-self.opt.num_sample_geo // 2:, :] = surf_normals | |
| # convert sdf from [-14, 130] to [0, 1] | |
| # outside: 0, inside: 1 | |
| # Note: Marching cubes is defined on occupancy space (inside=1.0, outside=0.0) | |
| labels = -labels.clip(min=-self.sdf_clip, max=self.sdf_clip) | |
| labels += self.sdf_clip | |
| labels /= (self.sdf_clip * 2) | |
| else: | |
| samples = np.concatenate([inside_samples, outside_samples]) | |
| labels = np.concatenate([ | |
| np.ones(inside_samples.shape[0]), | |
| np.zeros(outside_samples.shape[0]) | |
| ]) | |
| normals = np.zeros_like(samples) | |
| samples = torch.from_numpy(samples).float() | |
| labels = torch.from_numpy(labels).float() | |
| normals = torch.from_numpy(normals).float() | |
| return {'samples_geo': samples, 'labels_geo': labels} |