Spaces:
Build error
Build error
Upload 5 files
Browse files- lib/pymaf/models/__init__.py +3 -0
- lib/pymaf/models/hmr.py +303 -0
- lib/pymaf/models/maf_extractor.py +137 -0
- lib/pymaf/models/res_module.py +385 -0
- lib/pymaf/models/smpl.py +92 -0
lib/pymaf/models/__init__.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .hmr import hmr
|
| 2 |
+
from .pymaf_net import pymaf_net
|
| 3 |
+
from .smpl import SMPL
|
lib/pymaf/models/hmr.py
ADDED
|
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# This script is borrowed from https://github.com/nkolot/SPIN/blob/master/models/hmr.py
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torchvision.models.resnet as resnet
|
| 6 |
+
import numpy as np
|
| 7 |
+
import math
|
| 8 |
+
from lib.pymaf.utils.geometry import rot6d_to_rotmat
|
| 9 |
+
|
| 10 |
+
import logging
|
| 11 |
+
|
| 12 |
+
logger = logging.getLogger(__name__)
|
| 13 |
+
|
| 14 |
+
BN_MOMENTUM = 0.1
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class Bottleneck(nn.Module):
|
| 18 |
+
""" Redefinition of Bottleneck residual block
|
| 19 |
+
Adapted from the official PyTorch implementation
|
| 20 |
+
"""
|
| 21 |
+
expansion = 4
|
| 22 |
+
|
| 23 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
| 24 |
+
super().__init__()
|
| 25 |
+
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
| 26 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
| 27 |
+
self.conv2 = nn.Conv2d(planes,
|
| 28 |
+
planes,
|
| 29 |
+
kernel_size=3,
|
| 30 |
+
stride=stride,
|
| 31 |
+
padding=1,
|
| 32 |
+
bias=False)
|
| 33 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
| 34 |
+
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
|
| 35 |
+
self.bn3 = nn.BatchNorm2d(planes * 4)
|
| 36 |
+
self.relu = nn.ReLU(inplace=True)
|
| 37 |
+
self.downsample = downsample
|
| 38 |
+
self.stride = stride
|
| 39 |
+
|
| 40 |
+
def forward(self, x):
|
| 41 |
+
residual = x
|
| 42 |
+
|
| 43 |
+
out = self.conv1(x)
|
| 44 |
+
out = self.bn1(out)
|
| 45 |
+
out = self.relu(out)
|
| 46 |
+
|
| 47 |
+
out = self.conv2(out)
|
| 48 |
+
out = self.bn2(out)
|
| 49 |
+
out = self.relu(out)
|
| 50 |
+
|
| 51 |
+
out = self.conv3(out)
|
| 52 |
+
out = self.bn3(out)
|
| 53 |
+
|
| 54 |
+
if self.downsample is not None:
|
| 55 |
+
residual = self.downsample(x)
|
| 56 |
+
|
| 57 |
+
out += residual
|
| 58 |
+
out = self.relu(out)
|
| 59 |
+
|
| 60 |
+
return out
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
class ResNet_Backbone(nn.Module):
|
| 64 |
+
""" Feature Extrator with ResNet backbone
|
| 65 |
+
"""
|
| 66 |
+
|
| 67 |
+
def __init__(self, model='res50', pretrained=True):
|
| 68 |
+
if model == 'res50':
|
| 69 |
+
block, layers = Bottleneck, [3, 4, 6, 3]
|
| 70 |
+
else:
|
| 71 |
+
pass # TODO
|
| 72 |
+
|
| 73 |
+
self.inplanes = 64
|
| 74 |
+
super().__init__()
|
| 75 |
+
npose = 24 * 6
|
| 76 |
+
self.conv1 = nn.Conv2d(3,
|
| 77 |
+
64,
|
| 78 |
+
kernel_size=7,
|
| 79 |
+
stride=2,
|
| 80 |
+
padding=3,
|
| 81 |
+
bias=False)
|
| 82 |
+
self.bn1 = nn.BatchNorm2d(64)
|
| 83 |
+
self.relu = nn.ReLU(inplace=True)
|
| 84 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
| 85 |
+
self.layer1 = self._make_layer(block, 64, layers[0])
|
| 86 |
+
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
| 87 |
+
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
|
| 88 |
+
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
|
| 89 |
+
self.avgpool = nn.AvgPool2d(7, stride=1)
|
| 90 |
+
|
| 91 |
+
if pretrained:
|
| 92 |
+
resnet_imagenet = resnet.resnet50(pretrained=True)
|
| 93 |
+
self.load_state_dict(resnet_imagenet.state_dict(), strict=False)
|
| 94 |
+
logger.info('loaded resnet50 imagenet pretrained model')
|
| 95 |
+
|
| 96 |
+
def _make_layer(self, block, planes, blocks, stride=1):
|
| 97 |
+
downsample = None
|
| 98 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
| 99 |
+
downsample = nn.Sequential(
|
| 100 |
+
nn.Conv2d(self.inplanes,
|
| 101 |
+
planes * block.expansion,
|
| 102 |
+
kernel_size=1,
|
| 103 |
+
stride=stride,
|
| 104 |
+
bias=False),
|
| 105 |
+
nn.BatchNorm2d(planes * block.expansion),
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
layers = []
|
| 109 |
+
layers.append(block(self.inplanes, planes, stride, downsample))
|
| 110 |
+
self.inplanes = planes * block.expansion
|
| 111 |
+
for i in range(1, blocks):
|
| 112 |
+
layers.append(block(self.inplanes, planes))
|
| 113 |
+
|
| 114 |
+
return nn.Sequential(*layers)
|
| 115 |
+
|
| 116 |
+
def _make_deconv_layer(self, num_layers, num_filters, num_kernels):
|
| 117 |
+
assert num_layers == len(num_filters), \
|
| 118 |
+
'ERROR: num_deconv_layers is different len(num_deconv_filters)'
|
| 119 |
+
assert num_layers == len(num_kernels), \
|
| 120 |
+
'ERROR: num_deconv_layers is different len(num_deconv_filters)'
|
| 121 |
+
|
| 122 |
+
def _get_deconv_cfg(deconv_kernel, index):
|
| 123 |
+
if deconv_kernel == 4:
|
| 124 |
+
padding = 1
|
| 125 |
+
output_padding = 0
|
| 126 |
+
elif deconv_kernel == 3:
|
| 127 |
+
padding = 1
|
| 128 |
+
output_padding = 1
|
| 129 |
+
elif deconv_kernel == 2:
|
| 130 |
+
padding = 0
|
| 131 |
+
output_padding = 0
|
| 132 |
+
|
| 133 |
+
return deconv_kernel, padding, output_padding
|
| 134 |
+
|
| 135 |
+
layers = []
|
| 136 |
+
for i in range(num_layers):
|
| 137 |
+
kernel, padding, output_padding = _get_deconv_cfg(
|
| 138 |
+
num_kernels[i], i)
|
| 139 |
+
|
| 140 |
+
planes = num_filters[i]
|
| 141 |
+
layers.append(
|
| 142 |
+
nn.ConvTranspose2d(in_channels=self.inplanes,
|
| 143 |
+
out_channels=planes,
|
| 144 |
+
kernel_size=kernel,
|
| 145 |
+
stride=2,
|
| 146 |
+
padding=padding,
|
| 147 |
+
output_padding=output_padding,
|
| 148 |
+
bias=self.deconv_with_bias))
|
| 149 |
+
layers.append(nn.BatchNorm2d(planes, momentum=BN_MOMENTUM))
|
| 150 |
+
layers.append(nn.ReLU(inplace=True))
|
| 151 |
+
self.inplanes = planes
|
| 152 |
+
|
| 153 |
+
return nn.Sequential(*layers)
|
| 154 |
+
|
| 155 |
+
def forward(self, x):
|
| 156 |
+
|
| 157 |
+
batch_size = x.shape[0]
|
| 158 |
+
|
| 159 |
+
x = self.conv1(x)
|
| 160 |
+
x = self.bn1(x)
|
| 161 |
+
x = self.relu(x)
|
| 162 |
+
x = self.maxpool(x)
|
| 163 |
+
|
| 164 |
+
x1 = self.layer1(x)
|
| 165 |
+
x2 = self.layer2(x1)
|
| 166 |
+
x3 = self.layer3(x2)
|
| 167 |
+
x4 = self.layer4(x3)
|
| 168 |
+
|
| 169 |
+
xf = self.avgpool(x4)
|
| 170 |
+
xf = xf.view(xf.size(0), -1)
|
| 171 |
+
|
| 172 |
+
x_featmap = x4
|
| 173 |
+
|
| 174 |
+
return x_featmap, xf
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
class HMR(nn.Module):
|
| 178 |
+
""" SMPL Iterative Regressor with ResNet50 backbone
|
| 179 |
+
"""
|
| 180 |
+
|
| 181 |
+
def __init__(self, block, layers, smpl_mean_params):
|
| 182 |
+
self.inplanes = 64
|
| 183 |
+
super().__init__()
|
| 184 |
+
npose = 24 * 6
|
| 185 |
+
self.conv1 = nn.Conv2d(3,
|
| 186 |
+
64,
|
| 187 |
+
kernel_size=7,
|
| 188 |
+
stride=2,
|
| 189 |
+
padding=3,
|
| 190 |
+
bias=False)
|
| 191 |
+
self.bn1 = nn.BatchNorm2d(64)
|
| 192 |
+
self.relu = nn.ReLU(inplace=True)
|
| 193 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
| 194 |
+
self.layer1 = self._make_layer(block, 64, layers[0])
|
| 195 |
+
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
| 196 |
+
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
|
| 197 |
+
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
|
| 198 |
+
self.avgpool = nn.AvgPool2d(7, stride=1)
|
| 199 |
+
self.fc1 = nn.Linear(512 * block.expansion + npose + 13, 1024)
|
| 200 |
+
self.drop1 = nn.Dropout()
|
| 201 |
+
self.fc2 = nn.Linear(1024, 1024)
|
| 202 |
+
self.drop2 = nn.Dropout()
|
| 203 |
+
self.decpose = nn.Linear(1024, npose)
|
| 204 |
+
self.decshape = nn.Linear(1024, 10)
|
| 205 |
+
self.deccam = nn.Linear(1024, 3)
|
| 206 |
+
nn.init.xavier_uniform_(self.decpose.weight, gain=0.01)
|
| 207 |
+
nn.init.xavier_uniform_(self.decshape.weight, gain=0.01)
|
| 208 |
+
nn.init.xavier_uniform_(self.deccam.weight, gain=0.01)
|
| 209 |
+
|
| 210 |
+
for m in self.modules():
|
| 211 |
+
if isinstance(m, nn.Conv2d):
|
| 212 |
+
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
| 213 |
+
m.weight.data.normal_(0, math.sqrt(2. / n))
|
| 214 |
+
elif isinstance(m, nn.BatchNorm2d):
|
| 215 |
+
m.weight.data.fill_(1)
|
| 216 |
+
m.bias.data.zero_()
|
| 217 |
+
|
| 218 |
+
mean_params = np.load(smpl_mean_params)
|
| 219 |
+
init_pose = torch.from_numpy(mean_params['pose'][:]).unsqueeze(0)
|
| 220 |
+
init_shape = torch.from_numpy(
|
| 221 |
+
mean_params['shape'][:].astype('float32')).unsqueeze(0)
|
| 222 |
+
init_cam = torch.from_numpy(mean_params['cam']).unsqueeze(0)
|
| 223 |
+
self.register_buffer('init_pose', init_pose)
|
| 224 |
+
self.register_buffer('init_shape', init_shape)
|
| 225 |
+
self.register_buffer('init_cam', init_cam)
|
| 226 |
+
|
| 227 |
+
def _make_layer(self, block, planes, blocks, stride=1):
|
| 228 |
+
downsample = None
|
| 229 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
| 230 |
+
downsample = nn.Sequential(
|
| 231 |
+
nn.Conv2d(self.inplanes,
|
| 232 |
+
planes * block.expansion,
|
| 233 |
+
kernel_size=1,
|
| 234 |
+
stride=stride,
|
| 235 |
+
bias=False),
|
| 236 |
+
nn.BatchNorm2d(planes * block.expansion),
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
layers = []
|
| 240 |
+
layers.append(block(self.inplanes, planes, stride, downsample))
|
| 241 |
+
self.inplanes = planes * block.expansion
|
| 242 |
+
for i in range(1, blocks):
|
| 243 |
+
layers.append(block(self.inplanes, planes))
|
| 244 |
+
|
| 245 |
+
return nn.Sequential(*layers)
|
| 246 |
+
|
| 247 |
+
def forward(self,
|
| 248 |
+
x,
|
| 249 |
+
init_pose=None,
|
| 250 |
+
init_shape=None,
|
| 251 |
+
init_cam=None,
|
| 252 |
+
n_iter=3):
|
| 253 |
+
|
| 254 |
+
batch_size = x.shape[0]
|
| 255 |
+
|
| 256 |
+
if init_pose is None:
|
| 257 |
+
init_pose = self.init_pose.expand(batch_size, -1)
|
| 258 |
+
if init_shape is None:
|
| 259 |
+
init_shape = self.init_shape.expand(batch_size, -1)
|
| 260 |
+
if init_cam is None:
|
| 261 |
+
init_cam = self.init_cam.expand(batch_size, -1)
|
| 262 |
+
|
| 263 |
+
x = self.conv1(x)
|
| 264 |
+
x = self.bn1(x)
|
| 265 |
+
x = self.relu(x)
|
| 266 |
+
x = self.maxpool(x)
|
| 267 |
+
|
| 268 |
+
x1 = self.layer1(x)
|
| 269 |
+
x2 = self.layer2(x1)
|
| 270 |
+
x3 = self.layer3(x2)
|
| 271 |
+
x4 = self.layer4(x3)
|
| 272 |
+
|
| 273 |
+
xf = self.avgpool(x4)
|
| 274 |
+
xf = xf.view(xf.size(0), -1)
|
| 275 |
+
|
| 276 |
+
pred_pose = init_pose
|
| 277 |
+
pred_shape = init_shape
|
| 278 |
+
pred_cam = init_cam
|
| 279 |
+
for i in range(n_iter):
|
| 280 |
+
xc = torch.cat([xf, pred_pose, pred_shape, pred_cam], 1)
|
| 281 |
+
xc = self.fc1(xc)
|
| 282 |
+
xc = self.drop1(xc)
|
| 283 |
+
xc = self.fc2(xc)
|
| 284 |
+
xc = self.drop2(xc)
|
| 285 |
+
pred_pose = self.decpose(xc) + pred_pose
|
| 286 |
+
pred_shape = self.decshape(xc) + pred_shape
|
| 287 |
+
pred_cam = self.deccam(xc) + pred_cam
|
| 288 |
+
|
| 289 |
+
pred_rotmat = rot6d_to_rotmat(pred_pose).view(batch_size, 24, 3, 3)
|
| 290 |
+
|
| 291 |
+
return pred_rotmat, pred_shape, pred_cam
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
def hmr(smpl_mean_params, pretrained=True, **kwargs):
|
| 295 |
+
""" Constructs an HMR model with ResNet50 backbone.
|
| 296 |
+
Args:
|
| 297 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
| 298 |
+
"""
|
| 299 |
+
model = HMR(Bottleneck, [3, 4, 6, 3], smpl_mean_params, **kwargs)
|
| 300 |
+
if pretrained:
|
| 301 |
+
resnet_imagenet = resnet.resnet50(pretrained=True)
|
| 302 |
+
model.load_state_dict(resnet_imagenet.state_dict(), strict=False)
|
| 303 |
+
return model
|
lib/pymaf/models/maf_extractor.py
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# This script is borrowed and extended from https://github.com/shunsukesaito/PIFu/blob/master/lib/model/SurfaceClassifier.py
|
| 2 |
+
|
| 3 |
+
from packaging import version
|
| 4 |
+
import torch
|
| 5 |
+
import scipy
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
|
| 10 |
+
from lib.common.config import cfg
|
| 11 |
+
from lib.pymaf.utils.geometry import projection
|
| 12 |
+
from lib.pymaf.core.path_config import MESH_DOWNSAMPLEING
|
| 13 |
+
|
| 14 |
+
import logging
|
| 15 |
+
|
| 16 |
+
logger = logging.getLogger(__name__)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class MAF_Extractor(nn.Module):
|
| 20 |
+
''' Mesh-aligned Feature Extrator
|
| 21 |
+
|
| 22 |
+
As discussed in the paper, we extract mesh-aligned features based on 2D projection of the mesh vertices.
|
| 23 |
+
The features extrated from spatial feature maps will go through a MLP for dimension reduction.
|
| 24 |
+
'''
|
| 25 |
+
|
| 26 |
+
def __init__(self, device=torch.device('cuda')):
|
| 27 |
+
super().__init__()
|
| 28 |
+
|
| 29 |
+
self.device = device
|
| 30 |
+
self.filters = []
|
| 31 |
+
self.num_views = 1
|
| 32 |
+
filter_channels = cfg.MODEL.PyMAF.MLP_DIM
|
| 33 |
+
self.last_op = nn.ReLU(True)
|
| 34 |
+
|
| 35 |
+
for l in range(0, len(filter_channels) - 1):
|
| 36 |
+
if 0 != l:
|
| 37 |
+
self.filters.append(
|
| 38 |
+
nn.Conv1d(filter_channels[l] + filter_channels[0],
|
| 39 |
+
filter_channels[l + 1], 1))
|
| 40 |
+
else:
|
| 41 |
+
self.filters.append(
|
| 42 |
+
nn.Conv1d(filter_channels[l], filter_channels[l + 1], 1))
|
| 43 |
+
|
| 44 |
+
self.add_module("conv%d" % l, self.filters[l])
|
| 45 |
+
|
| 46 |
+
self.im_feat = None
|
| 47 |
+
self.cam = None
|
| 48 |
+
|
| 49 |
+
# downsample SMPL mesh and assign part labels
|
| 50 |
+
# from https://github.com/nkolot/GraphCMR/blob/master/data/mesh_downsampling.npz
|
| 51 |
+
smpl_mesh_graph = np.load(MESH_DOWNSAMPLEING,
|
| 52 |
+
allow_pickle=True,
|
| 53 |
+
encoding='latin1')
|
| 54 |
+
|
| 55 |
+
A = smpl_mesh_graph['A']
|
| 56 |
+
U = smpl_mesh_graph['U']
|
| 57 |
+
D = smpl_mesh_graph['D'] # shape: (2,)
|
| 58 |
+
|
| 59 |
+
# downsampling
|
| 60 |
+
ptD = []
|
| 61 |
+
for i in range(len(D)):
|
| 62 |
+
d = scipy.sparse.coo_matrix(D[i])
|
| 63 |
+
i = torch.LongTensor(np.array([d.row, d.col]))
|
| 64 |
+
v = torch.FloatTensor(d.data)
|
| 65 |
+
ptD.append(torch.sparse.FloatTensor(i, v, d.shape))
|
| 66 |
+
|
| 67 |
+
# downsampling mapping from 6890 points to 431 points
|
| 68 |
+
# ptD[0].to_dense() - Size: [1723, 6890]
|
| 69 |
+
# ptD[1].to_dense() - Size: [431. 1723]
|
| 70 |
+
Dmap = torch.matmul(ptD[1].to_dense(),
|
| 71 |
+
ptD[0].to_dense()) # 6890 -> 431
|
| 72 |
+
self.register_buffer('Dmap', Dmap)
|
| 73 |
+
|
| 74 |
+
def reduce_dim(self, feature):
|
| 75 |
+
'''
|
| 76 |
+
Dimension reduction by multi-layer perceptrons
|
| 77 |
+
:param feature: list of [B, C_s, N] point-wise features before dimension reduction
|
| 78 |
+
:return: [B, C_p x N] concatantion of point-wise features after dimension reduction
|
| 79 |
+
'''
|
| 80 |
+
y = feature
|
| 81 |
+
tmpy = feature
|
| 82 |
+
for i, f in enumerate(self.filters):
|
| 83 |
+
y = self._modules['conv' +
|
| 84 |
+
str(i)](y if i == 0 else torch.cat([y, tmpy], 1))
|
| 85 |
+
if i != len(self.filters) - 1:
|
| 86 |
+
y = F.leaky_relu(y)
|
| 87 |
+
if self.num_views > 1 and i == len(self.filters) // 2:
|
| 88 |
+
y = y.view(-1, self.num_views, y.shape[1],
|
| 89 |
+
y.shape[2]).mean(dim=1)
|
| 90 |
+
tmpy = feature.view(-1, self.num_views, feature.shape[1],
|
| 91 |
+
feature.shape[2]).mean(dim=1)
|
| 92 |
+
|
| 93 |
+
y = self.last_op(y)
|
| 94 |
+
|
| 95 |
+
y = y.view(y.shape[0], -1)
|
| 96 |
+
return y
|
| 97 |
+
|
| 98 |
+
def sampling(self, points, im_feat=None, z_feat=None):
|
| 99 |
+
'''
|
| 100 |
+
Given 2D points, sample the point-wise features for each point,
|
| 101 |
+
the dimension of point-wise features will be reduced from C_s to C_p by MLP.
|
| 102 |
+
Image features should be pre-computed before this call.
|
| 103 |
+
:param points: [B, N, 2] image coordinates of points
|
| 104 |
+
:im_feat: [B, C_s, H_s, W_s] spatial feature maps
|
| 105 |
+
:return: [B, C_p x N] concatantion of point-wise features after dimension reduction
|
| 106 |
+
'''
|
| 107 |
+
if im_feat is None:
|
| 108 |
+
im_feat = self.im_feat
|
| 109 |
+
|
| 110 |
+
batch_size = im_feat.shape[0]
|
| 111 |
+
|
| 112 |
+
if version.parse(torch.__version__) >= version.parse('1.3.0'):
|
| 113 |
+
# Default grid_sample behavior has changed to align_corners=False since 1.3.0.
|
| 114 |
+
point_feat = torch.nn.functional.grid_sample(
|
| 115 |
+
im_feat, points.unsqueeze(2), align_corners=True)[..., 0]
|
| 116 |
+
else:
|
| 117 |
+
point_feat = torch.nn.functional.grid_sample(
|
| 118 |
+
im_feat, points.unsqueeze(2))[..., 0]
|
| 119 |
+
|
| 120 |
+
mesh_align_feat = self.reduce_dim(point_feat)
|
| 121 |
+
return mesh_align_feat
|
| 122 |
+
|
| 123 |
+
def forward(self, p, s_feat=None, cam=None, **kwargs):
|
| 124 |
+
''' Returns mesh-aligned features for the 3D mesh points.
|
| 125 |
+
|
| 126 |
+
Args:
|
| 127 |
+
p (tensor): [B, N_m, 3] mesh vertices
|
| 128 |
+
s_feat (tensor): [B, C_s, H_s, W_s] spatial feature maps
|
| 129 |
+
cam (tensor): [B, 3] camera
|
| 130 |
+
Return:
|
| 131 |
+
mesh_align_feat (tensor): [B, C_p x N_m] mesh-aligned features
|
| 132 |
+
'''
|
| 133 |
+
if cam is None:
|
| 134 |
+
cam = self.cam
|
| 135 |
+
p_proj_2d = projection(p, cam, retain_z=False)
|
| 136 |
+
mesh_align_feat = self.sampling(p_proj_2d, s_feat)
|
| 137 |
+
return mesh_align_feat
|
lib/pymaf/models/res_module.py
ADDED
|
@@ -0,0 +1,385 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# code brought in part from https://github.com/microsoft/human-pose-estimation.pytorch/blob/master/lib/models/pose_resnet.py
|
| 2 |
+
|
| 3 |
+
from __future__ import absolute_import
|
| 4 |
+
from __future__ import division
|
| 5 |
+
from __future__ import print_function
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
from collections import OrderedDict
|
| 11 |
+
import os
|
| 12 |
+
from lib.pymaf.core.cfgs import cfg
|
| 13 |
+
|
| 14 |
+
import logging
|
| 15 |
+
|
| 16 |
+
logger = logging.getLogger(__name__)
|
| 17 |
+
|
| 18 |
+
BN_MOMENTUM = 0.1
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def conv3x3(in_planes, out_planes, stride=1, bias=False, groups=1):
|
| 22 |
+
"""3x3 convolution with padding"""
|
| 23 |
+
return nn.Conv2d(in_planes * groups,
|
| 24 |
+
out_planes * groups,
|
| 25 |
+
kernel_size=3,
|
| 26 |
+
stride=stride,
|
| 27 |
+
padding=1,
|
| 28 |
+
bias=bias,
|
| 29 |
+
groups=groups)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class BasicBlock(nn.Module):
|
| 33 |
+
expansion = 1
|
| 34 |
+
|
| 35 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1):
|
| 36 |
+
super().__init__()
|
| 37 |
+
self.conv1 = conv3x3(inplanes, planes, stride, groups=groups)
|
| 38 |
+
self.bn1 = nn.BatchNorm2d(planes * groups, momentum=BN_MOMENTUM)
|
| 39 |
+
self.relu = nn.ReLU(inplace=True)
|
| 40 |
+
self.conv2 = conv3x3(planes, planes, groups=groups)
|
| 41 |
+
self.bn2 = nn.BatchNorm2d(planes * groups, momentum=BN_MOMENTUM)
|
| 42 |
+
self.downsample = downsample
|
| 43 |
+
self.stride = stride
|
| 44 |
+
|
| 45 |
+
def forward(self, x):
|
| 46 |
+
residual = x
|
| 47 |
+
|
| 48 |
+
out = self.conv1(x)
|
| 49 |
+
out = self.bn1(out)
|
| 50 |
+
out = self.relu(out)
|
| 51 |
+
|
| 52 |
+
out = self.conv2(out)
|
| 53 |
+
out = self.bn2(out)
|
| 54 |
+
|
| 55 |
+
if self.downsample is not None:
|
| 56 |
+
residual = self.downsample(x)
|
| 57 |
+
|
| 58 |
+
out += residual
|
| 59 |
+
out = self.relu(out)
|
| 60 |
+
|
| 61 |
+
return out
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class Bottleneck(nn.Module):
|
| 65 |
+
expansion = 4
|
| 66 |
+
|
| 67 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1):
|
| 68 |
+
super().__init__()
|
| 69 |
+
self.conv1 = nn.Conv2d(inplanes * groups,
|
| 70 |
+
planes * groups,
|
| 71 |
+
kernel_size=1,
|
| 72 |
+
bias=False,
|
| 73 |
+
groups=groups)
|
| 74 |
+
self.bn1 = nn.BatchNorm2d(planes * groups, momentum=BN_MOMENTUM)
|
| 75 |
+
self.conv2 = nn.Conv2d(planes * groups,
|
| 76 |
+
planes * groups,
|
| 77 |
+
kernel_size=3,
|
| 78 |
+
stride=stride,
|
| 79 |
+
padding=1,
|
| 80 |
+
bias=False,
|
| 81 |
+
groups=groups)
|
| 82 |
+
self.bn2 = nn.BatchNorm2d(planes * groups, momentum=BN_MOMENTUM)
|
| 83 |
+
self.conv3 = nn.Conv2d(planes * groups,
|
| 84 |
+
planes * self.expansion * groups,
|
| 85 |
+
kernel_size=1,
|
| 86 |
+
bias=False,
|
| 87 |
+
groups=groups)
|
| 88 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion * groups,
|
| 89 |
+
momentum=BN_MOMENTUM)
|
| 90 |
+
self.relu = nn.ReLU(inplace=True)
|
| 91 |
+
self.downsample = downsample
|
| 92 |
+
self.stride = stride
|
| 93 |
+
|
| 94 |
+
def forward(self, x):
|
| 95 |
+
residual = x
|
| 96 |
+
|
| 97 |
+
out = self.conv1(x)
|
| 98 |
+
out = self.bn1(out)
|
| 99 |
+
out = self.relu(out)
|
| 100 |
+
|
| 101 |
+
out = self.conv2(out)
|
| 102 |
+
out = self.bn2(out)
|
| 103 |
+
out = self.relu(out)
|
| 104 |
+
|
| 105 |
+
out = self.conv3(out)
|
| 106 |
+
out = self.bn3(out)
|
| 107 |
+
|
| 108 |
+
if self.downsample is not None:
|
| 109 |
+
residual = self.downsample(x)
|
| 110 |
+
|
| 111 |
+
out += residual
|
| 112 |
+
out = self.relu(out)
|
| 113 |
+
|
| 114 |
+
return out
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
resnet_spec = {
|
| 118 |
+
18: (BasicBlock, [2, 2, 2, 2]),
|
| 119 |
+
34: (BasicBlock, [3, 4, 6, 3]),
|
| 120 |
+
50: (Bottleneck, [3, 4, 6, 3]),
|
| 121 |
+
101: (Bottleneck, [3, 4, 23, 3]),
|
| 122 |
+
152: (Bottleneck, [3, 8, 36, 3])
|
| 123 |
+
}
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
class IUV_predict_layer(nn.Module):
|
| 127 |
+
def __init__(self,
|
| 128 |
+
feat_dim=256,
|
| 129 |
+
final_cov_k=3,
|
| 130 |
+
part_out_dim=25,
|
| 131 |
+
with_uv=True):
|
| 132 |
+
super().__init__()
|
| 133 |
+
|
| 134 |
+
self.with_uv = with_uv
|
| 135 |
+
if self.with_uv:
|
| 136 |
+
self.predict_u = nn.Conv2d(in_channels=feat_dim,
|
| 137 |
+
out_channels=25,
|
| 138 |
+
kernel_size=final_cov_k,
|
| 139 |
+
stride=1,
|
| 140 |
+
padding=1 if final_cov_k == 3 else 0)
|
| 141 |
+
|
| 142 |
+
self.predict_v = nn.Conv2d(in_channels=feat_dim,
|
| 143 |
+
out_channels=25,
|
| 144 |
+
kernel_size=final_cov_k,
|
| 145 |
+
stride=1,
|
| 146 |
+
padding=1 if final_cov_k == 3 else 0)
|
| 147 |
+
|
| 148 |
+
self.predict_ann_index = nn.Conv2d(
|
| 149 |
+
in_channels=feat_dim,
|
| 150 |
+
out_channels=15,
|
| 151 |
+
kernel_size=final_cov_k,
|
| 152 |
+
stride=1,
|
| 153 |
+
padding=1 if final_cov_k == 3 else 0)
|
| 154 |
+
|
| 155 |
+
self.predict_uv_index = nn.Conv2d(in_channels=feat_dim,
|
| 156 |
+
out_channels=25,
|
| 157 |
+
kernel_size=final_cov_k,
|
| 158 |
+
stride=1,
|
| 159 |
+
padding=1 if final_cov_k == 3 else 0)
|
| 160 |
+
|
| 161 |
+
self.inplanes = feat_dim
|
| 162 |
+
|
| 163 |
+
def _make_layer(self, block, planes, blocks, stride=1):
|
| 164 |
+
downsample = None
|
| 165 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
| 166 |
+
downsample = nn.Sequential(
|
| 167 |
+
nn.Conv2d(self.inplanes,
|
| 168 |
+
planes * block.expansion,
|
| 169 |
+
kernel_size=1,
|
| 170 |
+
stride=stride,
|
| 171 |
+
bias=False),
|
| 172 |
+
nn.BatchNorm2d(planes * block.expansion),
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
layers = []
|
| 176 |
+
layers.append(block(self.inplanes, planes, stride, downsample))
|
| 177 |
+
self.inplanes = planes * block.expansion
|
| 178 |
+
for i in range(1, blocks):
|
| 179 |
+
layers.append(block(self.inplanes, planes))
|
| 180 |
+
|
| 181 |
+
return nn.Sequential(*layers)
|
| 182 |
+
|
| 183 |
+
def forward(self, x):
|
| 184 |
+
return_dict = {}
|
| 185 |
+
|
| 186 |
+
predict_uv_index = self.predict_uv_index(x)
|
| 187 |
+
predict_ann_index = self.predict_ann_index(x)
|
| 188 |
+
|
| 189 |
+
return_dict['predict_uv_index'] = predict_uv_index
|
| 190 |
+
return_dict['predict_ann_index'] = predict_ann_index
|
| 191 |
+
|
| 192 |
+
if self.with_uv:
|
| 193 |
+
predict_u = self.predict_u(x)
|
| 194 |
+
predict_v = self.predict_v(x)
|
| 195 |
+
return_dict['predict_u'] = predict_u
|
| 196 |
+
return_dict['predict_v'] = predict_v
|
| 197 |
+
else:
|
| 198 |
+
return_dict['predict_u'] = None
|
| 199 |
+
return_dict['predict_v'] = None
|
| 200 |
+
# return_dict['predict_u'] = torch.zeros(predict_uv_index.shape).to(predict_uv_index.device)
|
| 201 |
+
# return_dict['predict_v'] = torch.zeros(predict_uv_index.shape).to(predict_uv_index.device)
|
| 202 |
+
|
| 203 |
+
return return_dict
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
class SmplResNet(nn.Module):
|
| 207 |
+
def __init__(self,
|
| 208 |
+
resnet_nums,
|
| 209 |
+
in_channels=3,
|
| 210 |
+
num_classes=229,
|
| 211 |
+
last_stride=2,
|
| 212 |
+
n_extra_feat=0,
|
| 213 |
+
truncate=0,
|
| 214 |
+
**kwargs):
|
| 215 |
+
super().__init__()
|
| 216 |
+
|
| 217 |
+
self.inplanes = 64
|
| 218 |
+
self.truncate = truncate
|
| 219 |
+
# extra = cfg.MODEL.EXTRA
|
| 220 |
+
# self.deconv_with_bias = extra.DECONV_WITH_BIAS
|
| 221 |
+
block, layers = resnet_spec[resnet_nums]
|
| 222 |
+
|
| 223 |
+
self.conv1 = nn.Conv2d(in_channels,
|
| 224 |
+
64,
|
| 225 |
+
kernel_size=7,
|
| 226 |
+
stride=2,
|
| 227 |
+
padding=3,
|
| 228 |
+
bias=False)
|
| 229 |
+
self.bn1 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM)
|
| 230 |
+
self.relu = nn.ReLU(inplace=True)
|
| 231 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
| 232 |
+
self.layer1 = self._make_layer(block, 64, layers[0])
|
| 233 |
+
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
| 234 |
+
self.layer3 = self._make_layer(block, 256, layers[2],
|
| 235 |
+
stride=2) if truncate < 2 else None
|
| 236 |
+
self.layer4 = self._make_layer(
|
| 237 |
+
block, 512, layers[3],
|
| 238 |
+
stride=last_stride) if truncate < 1 else None
|
| 239 |
+
|
| 240 |
+
self.avg_pooling = nn.AdaptiveAvgPool2d(1)
|
| 241 |
+
|
| 242 |
+
self.num_classes = num_classes
|
| 243 |
+
if num_classes > 0:
|
| 244 |
+
self.final_layer = nn.Linear(512 * block.expansion, num_classes)
|
| 245 |
+
nn.init.xavier_uniform_(self.final_layer.weight, gain=0.01)
|
| 246 |
+
|
| 247 |
+
self.n_extra_feat = n_extra_feat
|
| 248 |
+
if n_extra_feat > 0:
|
| 249 |
+
self.trans_conv = nn.Sequential(
|
| 250 |
+
nn.Conv2d(n_extra_feat + 512 * block.expansion,
|
| 251 |
+
512 * block.expansion,
|
| 252 |
+
kernel_size=1,
|
| 253 |
+
bias=False),
|
| 254 |
+
nn.BatchNorm2d(512 * block.expansion, momentum=BN_MOMENTUM),
|
| 255 |
+
nn.ReLU(True))
|
| 256 |
+
|
| 257 |
+
def _make_layer(self, block, planes, blocks, stride=1):
|
| 258 |
+
downsample = None
|
| 259 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
| 260 |
+
downsample = nn.Sequential(
|
| 261 |
+
nn.Conv2d(self.inplanes,
|
| 262 |
+
planes * block.expansion,
|
| 263 |
+
kernel_size=1,
|
| 264 |
+
stride=stride,
|
| 265 |
+
bias=False),
|
| 266 |
+
nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM),
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
layers = []
|
| 270 |
+
layers.append(block(self.inplanes, planes, stride, downsample))
|
| 271 |
+
self.inplanes = planes * block.expansion
|
| 272 |
+
for i in range(1, blocks):
|
| 273 |
+
layers.append(block(self.inplanes, planes))
|
| 274 |
+
|
| 275 |
+
return nn.Sequential(*layers)
|
| 276 |
+
|
| 277 |
+
def forward(self, x, infeat=None):
|
| 278 |
+
x = self.conv1(x)
|
| 279 |
+
x = self.bn1(x)
|
| 280 |
+
x = self.relu(x)
|
| 281 |
+
x = self.maxpool(x)
|
| 282 |
+
|
| 283 |
+
x1 = self.layer1(x)
|
| 284 |
+
x2 = self.layer2(x1)
|
| 285 |
+
x3 = self.layer3(x2) if self.truncate < 2 else x2
|
| 286 |
+
x4 = self.layer4(x3) if self.truncate < 1 else x3
|
| 287 |
+
|
| 288 |
+
if infeat is not None:
|
| 289 |
+
x4 = self.trans_conv(torch.cat([infeat, x4], 1))
|
| 290 |
+
|
| 291 |
+
if self.num_classes > 0:
|
| 292 |
+
xp = self.avg_pooling(x4)
|
| 293 |
+
cls = self.final_layer(xp.view(xp.size(0), -1))
|
| 294 |
+
if not cfg.DANET.USE_MEAN_PARA:
|
| 295 |
+
# for non-negative scale
|
| 296 |
+
scale = F.relu(cls[:, 0]).unsqueeze(1)
|
| 297 |
+
cls = torch.cat((scale, cls[:, 1:]), dim=1)
|
| 298 |
+
else:
|
| 299 |
+
cls = None
|
| 300 |
+
|
| 301 |
+
return cls, {'x4': x4}
|
| 302 |
+
|
| 303 |
+
def init_weights(self, pretrained=''):
|
| 304 |
+
if os.path.isfile(pretrained):
|
| 305 |
+
logger.info('=> loading pretrained model {}'.format(pretrained))
|
| 306 |
+
# self.load_state_dict(pretrained_state_dict, strict=False)
|
| 307 |
+
checkpoint = torch.load(pretrained)
|
| 308 |
+
if isinstance(checkpoint, OrderedDict):
|
| 309 |
+
# state_dict = checkpoint
|
| 310 |
+
state_dict_old = self.state_dict()
|
| 311 |
+
for key in state_dict_old.keys():
|
| 312 |
+
if key in checkpoint.keys():
|
| 313 |
+
if state_dict_old[key].shape != checkpoint[key].shape:
|
| 314 |
+
del checkpoint[key]
|
| 315 |
+
state_dict = checkpoint
|
| 316 |
+
elif isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
|
| 317 |
+
state_dict_old = checkpoint['state_dict']
|
| 318 |
+
state_dict = OrderedDict()
|
| 319 |
+
# delete 'module.' because it is saved from DataParallel module
|
| 320 |
+
for key in state_dict_old.keys():
|
| 321 |
+
if key.startswith('module.'):
|
| 322 |
+
# state_dict[key[7:]] = state_dict[key]
|
| 323 |
+
# state_dict.pop(key)
|
| 324 |
+
state_dict[key[7:]] = state_dict_old[key]
|
| 325 |
+
else:
|
| 326 |
+
state_dict[key] = state_dict_old[key]
|
| 327 |
+
else:
|
| 328 |
+
raise RuntimeError(
|
| 329 |
+
'No state_dict found in checkpoint file {}'.format(
|
| 330 |
+
pretrained))
|
| 331 |
+
self.load_state_dict(state_dict, strict=False)
|
| 332 |
+
else:
|
| 333 |
+
logger.error('=> imagenet pretrained model dose not exist')
|
| 334 |
+
logger.error('=> please download it first')
|
| 335 |
+
raise ValueError('imagenet pretrained model does not exist')
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
class LimbResLayers(nn.Module):
|
| 339 |
+
def __init__(self,
|
| 340 |
+
resnet_nums,
|
| 341 |
+
inplanes,
|
| 342 |
+
outplanes=None,
|
| 343 |
+
groups=1,
|
| 344 |
+
**kwargs):
|
| 345 |
+
super().__init__()
|
| 346 |
+
|
| 347 |
+
self.inplanes = inplanes
|
| 348 |
+
block, layers = resnet_spec[resnet_nums]
|
| 349 |
+
self.outplanes = 512 if outplanes == None else outplanes
|
| 350 |
+
self.layer4 = self._make_layer(block,
|
| 351 |
+
self.outplanes,
|
| 352 |
+
layers[3],
|
| 353 |
+
stride=2,
|
| 354 |
+
groups=groups)
|
| 355 |
+
|
| 356 |
+
self.avg_pooling = nn.AdaptiveAvgPool2d(1)
|
| 357 |
+
|
| 358 |
+
def _make_layer(self, block, planes, blocks, stride=1, groups=1):
|
| 359 |
+
downsample = None
|
| 360 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
| 361 |
+
downsample = nn.Sequential(
|
| 362 |
+
nn.Conv2d(self.inplanes * groups,
|
| 363 |
+
planes * block.expansion * groups,
|
| 364 |
+
kernel_size=1,
|
| 365 |
+
stride=stride,
|
| 366 |
+
bias=False,
|
| 367 |
+
groups=groups),
|
| 368 |
+
nn.BatchNorm2d(planes * block.expansion * groups,
|
| 369 |
+
momentum=BN_MOMENTUM),
|
| 370 |
+
)
|
| 371 |
+
|
| 372 |
+
layers = []
|
| 373 |
+
layers.append(
|
| 374 |
+
block(self.inplanes, planes, stride, downsample, groups=groups))
|
| 375 |
+
self.inplanes = planes * block.expansion
|
| 376 |
+
for i in range(1, blocks):
|
| 377 |
+
layers.append(block(self.inplanes, planes, groups=groups))
|
| 378 |
+
|
| 379 |
+
return nn.Sequential(*layers)
|
| 380 |
+
|
| 381 |
+
def forward(self, x):
|
| 382 |
+
x = self.layer4(x)
|
| 383 |
+
x = self.avg_pooling(x)
|
| 384 |
+
|
| 385 |
+
return x
|
lib/pymaf/models/smpl.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# This script is borrowed from https://github.com/nkolot/SPIN/blob/master/models/smpl.py
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from lib.smplx import SMPL as _SMPL
|
| 6 |
+
from lib.smplx.body_models import ModelOutput
|
| 7 |
+
from lib.smplx.lbs import vertices2joints
|
| 8 |
+
from collections import namedtuple
|
| 9 |
+
|
| 10 |
+
from lib.pymaf.core import path_config, constants
|
| 11 |
+
|
| 12 |
+
SMPL_MEAN_PARAMS = path_config.SMPL_MEAN_PARAMS
|
| 13 |
+
SMPL_MODEL_DIR = path_config.SMPL_MODEL_DIR
|
| 14 |
+
|
| 15 |
+
# Indices to get the 14 LSP joints from the 17 H36M joints
|
| 16 |
+
H36M_TO_J17 = [6, 5, 4, 1, 2, 3, 16, 15, 14, 11, 12, 13, 8, 10, 0, 7, 9]
|
| 17 |
+
H36M_TO_J14 = H36M_TO_J17[:14]
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class SMPL(_SMPL):
|
| 21 |
+
""" Extension of the official SMPL implementation to support more joints """
|
| 22 |
+
|
| 23 |
+
def __init__(self, *args, **kwargs):
|
| 24 |
+
super().__init__(*args, **kwargs)
|
| 25 |
+
joints = [constants.JOINT_MAP[i] for i in constants.JOINT_NAMES]
|
| 26 |
+
J_regressor_extra = np.load(path_config.JOINT_REGRESSOR_TRAIN_EXTRA)
|
| 27 |
+
self.register_buffer(
|
| 28 |
+
'J_regressor_extra',
|
| 29 |
+
torch.tensor(J_regressor_extra, dtype=torch.float32))
|
| 30 |
+
self.joint_map = torch.tensor(joints, dtype=torch.long)
|
| 31 |
+
self.ModelOutput = namedtuple(
|
| 32 |
+
'ModelOutput_', ModelOutput._fields + (
|
| 33 |
+
'smpl_joints',
|
| 34 |
+
'joints_J19',
|
| 35 |
+
))
|
| 36 |
+
self.ModelOutput.__new__.__defaults__ = (None, ) * len(
|
| 37 |
+
self.ModelOutput._fields)
|
| 38 |
+
|
| 39 |
+
def forward(self, *args, **kwargs):
|
| 40 |
+
kwargs['get_skin'] = True
|
| 41 |
+
smpl_output = super().forward(*args, **kwargs)
|
| 42 |
+
extra_joints = vertices2joints(self.J_regressor_extra,
|
| 43 |
+
smpl_output.vertices)
|
| 44 |
+
# smpl_output.joints: [B, 45, 3] extra_joints: [B, 9, 3]
|
| 45 |
+
vertices = smpl_output.vertices
|
| 46 |
+
joints = torch.cat([smpl_output.joints, extra_joints], dim=1)
|
| 47 |
+
smpl_joints = smpl_output.joints[:, :24]
|
| 48 |
+
joints = joints[:, self.joint_map, :] # [B, 49, 3]
|
| 49 |
+
joints_J24 = joints[:, -24:, :]
|
| 50 |
+
joints_J19 = joints_J24[:, constants.J24_TO_J19, :]
|
| 51 |
+
output = self.ModelOutput(vertices=vertices,
|
| 52 |
+
global_orient=smpl_output.global_orient,
|
| 53 |
+
body_pose=smpl_output.body_pose,
|
| 54 |
+
joints=joints,
|
| 55 |
+
joints_J19=joints_J19,
|
| 56 |
+
smpl_joints=smpl_joints,
|
| 57 |
+
betas=smpl_output.betas,
|
| 58 |
+
full_pose=smpl_output.full_pose)
|
| 59 |
+
return output
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def get_smpl_faces():
|
| 63 |
+
smpl = SMPL(SMPL_MODEL_DIR, batch_size=1, create_transl=False)
|
| 64 |
+
return smpl.faces
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def get_part_joints(smpl_joints):
|
| 68 |
+
batch_size = smpl_joints.shape[0]
|
| 69 |
+
|
| 70 |
+
# part_joints = torch.zeros().to(smpl_joints.device)
|
| 71 |
+
|
| 72 |
+
one_seg_pairs = [(0, 1), (0, 2), (0, 3), (3, 6), (9, 12), (9, 13), (9, 14),
|
| 73 |
+
(12, 15), (13, 16), (14, 17)]
|
| 74 |
+
two_seg_pairs = [(1, 4), (2, 5), (4, 7), (5, 8), (16, 18), (17, 19),
|
| 75 |
+
(18, 20), (19, 21)]
|
| 76 |
+
|
| 77 |
+
one_seg_pairs.extend(two_seg_pairs)
|
| 78 |
+
|
| 79 |
+
single_joints = [(10), (11), (15), (22), (23)]
|
| 80 |
+
|
| 81 |
+
part_joints = []
|
| 82 |
+
|
| 83 |
+
for j_p in one_seg_pairs:
|
| 84 |
+
new_joint = torch.mean(smpl_joints[:, j_p], dim=1, keepdim=True)
|
| 85 |
+
part_joints.append(new_joint)
|
| 86 |
+
|
| 87 |
+
for j_p in single_joints:
|
| 88 |
+
part_joints.append(smpl_joints[:, j_p:j_p + 1])
|
| 89 |
+
|
| 90 |
+
part_joints = torch.cat(part_joints, dim=1)
|
| 91 |
+
|
| 92 |
+
return part_joints
|