Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,288 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
import re
|
5 |
-
import os
|
6 |
import pandas as pd
|
7 |
from PIL import Image
|
8 |
import time
|
9 |
from paddleocr import PaddleOCR, draw_ocr
|
10 |
-
import paddle
|
11 |
import openai
|
12 |
|
13 |
-
#
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
openai.api_base = "https://openrouter.ai/api/v1"
|
|
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
20 |
|
21 |
-
#
|
22 |
-
#
|
23 |
-
#
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
""
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
1. Aplikasi ini masih dalam Pengembangan.
|
36 |
-
2. Hasil ekstraksi hanya sebagai gambaran; silakan koreksi bila diperlukan.
|
37 |
-
3. Hosting gratisan, jadi mungkin ada beberapa kendala.
|
38 |
-
4. Kode dapat diakses di Hugging Face untuk kontribusi atau feedback.
|
39 |
-
5. Referensi: [Health Promotion Board Singapura](https://www.hpb.gov.sg/docs/default-source/pdf/nutri-grade-ci-guide_eng-only67e4e36349ad4274bfdb22236872336d.pdf)
|
40 |
-
""")
|
41 |
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
cleaned = re.sub(r"[^\d\.\-]", "", text)
|
45 |
try:
|
46 |
return float(cleaned)
|
47 |
-
except ValueError:
|
48 |
return 0.0
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
# --- STEP 1: Upload Gambar ---
|
55 |
-
uploaded_file = st.file_uploader(
|
|
|
|
|
|
|
|
|
56 |
if uploaded_file is not None:
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
img_path = "uploaded_image.jpg"
|
61 |
cv2.imwrite(img_path, img)
|
62 |
|
63 |
-
# --- STEP 2: OCR
|
64 |
-
st.
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
# Ekstrak data OCR
|
74 |
-
ocr_data = ocr_result[0]
|
75 |
-
ocr_list = []
|
76 |
-
for line in ocr_data:
|
77 |
-
box = line[0]
|
78 |
-
text = line[1][0]
|
79 |
-
score = line[1][1]
|
80 |
-
xs = [pt[0] for pt in box]
|
81 |
-
ys = [pt[1] for pt in box]
|
82 |
-
center_x = sum(xs) / len(xs)
|
83 |
-
center_y = sum(ys) / len(ys)
|
84 |
-
ocr_list.append({
|
85 |
-
"text": text,
|
86 |
-
"box": box,
|
87 |
-
"score": score,
|
88 |
-
"center_x": center_x,
|
89 |
-
"center_y": center_y,
|
90 |
-
"height": max(ys) - min(ys)
|
91 |
-
})
|
92 |
-
ocr_list = sorted(ocr_list, key=lambda x: x["center_y"])
|
93 |
-
|
94 |
-
# Ekstrak pasangan key-value dengan format "key: value"
|
95 |
-
target_keys = {
|
96 |
-
"gula": ["gula"],
|
97 |
-
"takaran saji": ["takaran saji", "serving size"],
|
98 |
-
"lemak jenuh": ["lemak jenuh"]
|
99 |
-
}
|
100 |
-
extracted = {}
|
101 |
-
# Pass 1: Ekstraksi dengan tanda titik dua
|
102 |
-
for item in ocr_list:
|
103 |
-
txt_lower = item["text"].lower()
|
104 |
-
if ":" in txt_lower:
|
105 |
-
parts = txt_lower.split(":")
|
106 |
-
key_candidate = parts[0].strip()
|
107 |
-
value_candidate = parts[-1].strip()
|
108 |
-
for canonical, variants in target_keys.items():
|
109 |
-
if canonical not in extracted:
|
110 |
-
for variant in variants:
|
111 |
-
if variant in key_candidate:
|
112 |
-
clean_value = re.sub(r"[^\d\.\-]", "", value_candidate)
|
113 |
-
if clean_value and clean_value != ".":
|
114 |
-
extracted[canonical.capitalize()] = clean_value
|
115 |
-
break
|
116 |
-
# Pass 2: Fallback untuk key yang belum diekstrak
|
117 |
-
for item in ocr_list:
|
118 |
-
txt_lower = item["text"].lower()
|
119 |
-
for canonical, variants in target_keys.items():
|
120 |
-
if canonical not in extracted:
|
121 |
-
for variant in variants:
|
122 |
-
if variant in txt_lower:
|
123 |
-
key_center = (item["center_x"], item["center_y"])
|
124 |
-
key_height = item["height"]
|
125 |
-
best_candidate = None
|
126 |
-
min_dx = float('inf')
|
127 |
-
for other in ocr_list:
|
128 |
-
if other == item:
|
129 |
-
continue
|
130 |
-
if other["center_x"] > key_center[0] and abs(other["center_y"] - key_center[1]) < 0.5 * key_height:
|
131 |
-
dx = other["center_x"] - key_center[0]
|
132 |
-
if dx < min_dx:
|
133 |
-
min_dx = dx
|
134 |
-
best_candidate = other
|
135 |
-
if best_candidate:
|
136 |
-
raw_value = best_candidate["text"]
|
137 |
-
clean_value = re.sub(r"[^\d\.\-]", "", raw_value)
|
138 |
-
if clean_value and clean_value != ".":
|
139 |
-
extracted[canonical.capitalize()] = clean_value
|
140 |
-
break
|
141 |
-
|
142 |
-
if extracted:
|
143 |
-
st.write("**Hasil Ekstraksi Key-Value:**")
|
144 |
-
for k, v in extracted.items():
|
145 |
-
st.write(f"{k}: {v}")
|
146 |
else:
|
147 |
-
st.
|
|
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
154 |
im_show = Image.fromarray(im_show)
|
155 |
st.image(im_show, caption="Hasil OCR dengan Bounding Boxes", use_column_width=True)
|
156 |
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
|
|
|
|
|
|
|
|
173 |
|
|
|
|
|
|
|
|
|
|
|
174 |
sugar_value = parse_numeric_value(corrected_data.get("Gula", "0"))
|
175 |
-
fat_value
|
176 |
-
|
177 |
-
if serving_size
|
178 |
-
|
179 |
-
|
180 |
-
else:
|
181 |
-
st.error("Takaran saji tidak valid untuk normalisasi.")
|
182 |
-
sugar_norm, fat_norm = sugar_value, fat_value
|
183 |
-
|
184 |
-
st.write("**Tabel Hasil Normalisasi per 100 g/ml**")
|
185 |
-
data_tabel = {
|
186 |
-
"Nutrisi": ["Gula", "Lemak jenuh"],
|
187 |
-
"Nilai (per 100 g/ml)": [sugar_norm, fat_norm]
|
188 |
-
}
|
189 |
-
df_tabel = pd.DataFrame(data_tabel)
|
190 |
-
st.table(df_tabel)
|
191 |
|
|
|
|
|
|
|
|
|
192 |
# Hitung Grade
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
st.
|
216 |
-
st.
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
margin-top: 10px;
|
233 |
-
font-weight: bold;
|
234 |
-
color: white;
|
235 |
-
text-align: center;
|
236 |
-
">
|
237 |
-
{grade_text}
|
238 |
-
</div>
|
239 |
-
"""
|
240 |
-
st.markdown(color_grade(final_grade), unsafe_allow_html=True)
|
241 |
-
|
242 |
-
# --- Integrasi Qwen Satu Kali untuk Saran Nutrisi ---
|
243 |
-
nutrition_prompt = f"""
|
244 |
-
Anda adalah ahli gizi yang ramah, komunikatif, dan berpengalaman.
|
245 |
-
Data nutrisi:
|
246 |
-
- Takaran saji: {serving_size} g/ml
|
247 |
-
- Kandungan Gula (per 100 g/ml): {sugar_norm} g
|
248 |
-
- Kandungan Lemak Jenuh (per 100 g/ml): {fat_norm} g
|
249 |
-
- Grade Gula: {sugar_grade}
|
250 |
-
- Grade Lemak Jenuh: {fat_grade}
|
251 |
-
- Grade Akhir: {final_grade}
|
252 |
-
Berdasarkan data tersebut, berikan saran nutrisi yang informatif dalam satu paragraf pendek (50-100 kata).
|
253 |
-
Jelaskan secara ringkas dengan mengulang data nutrisi, dampak kesehatannya, dan berikan tips praktis untuk menjaga pola makan seimbang dengan bahasa yang bersahabat.
|
254 |
-
"""
|
255 |
-
st.write("Tunggu sebentar, Qwen si AI nutritionist sedang memproses penjelasannya... 🤖")
|
256 |
-
try:
|
257 |
-
completion = openai.ChatCompletion.create(
|
258 |
-
model="qwen/qwen2.5-vl-72b-instruct:free",
|
259 |
-
messages=[
|
260 |
-
{
|
261 |
-
"role": "user",
|
262 |
-
"content": nutrition_prompt
|
263 |
-
}
|
264 |
-
]
|
265 |
-
)
|
266 |
-
nutrition_advice = completion.choices[0].message.content
|
267 |
-
st.write("**Saran Nutrisi dari Qwen:**")
|
268 |
-
st.write(nutrition_advice)
|
269 |
-
except Exception as e:
|
270 |
-
st.error(f"Gagal mendapatkan saran dari Qwen: {e}")
|
271 |
|
272 |
# --- Tampilan Tim Pengembang ---
|
273 |
st.markdown("""
|
274 |
-
<div style="border:
|
275 |
-
<h4>Tim Pengembang</h4>
|
276 |
-
<p><strong>Nicholas Dominic</strong>, Mentor - <a href="https://www.linkedin.com/in/nicholas-dominic">LinkedIn</a></p>
|
277 |
-
<p><strong>Tata Aditya Pamungkas</strong>, Machine Learning - <a href="https://www.linkedin.com/in/tata-aditya-pamungkas">LinkedIn</a></p>
|
278 |
-
<p><strong>Raihan Hafiz</strong>, Web Dev - <a href="https://www.linkedin.com/in/m-raihan-hafiz-91a368186">LinkedIn</a></p>
|
279 |
-
</div>
|
280 |
""", unsafe_allow_html=True)
|
281 |
|
282 |
-
with st.expander("
|
283 |
st.markdown("""
|
284 |
-
1.
|
285 |
-
2. Recall asupan
|
286 |
-
|
287 |
-
|
288 |
-
|
|
|
1 |
+
Tentu, saya akan membantu membenahi kode Anda.
|
2 |
+
|
3 |
+
Kode yang Anda berikan sudah cukup baik, tetapi ada beberapa area yang bisa kita tingkatkan untuk membuatnya lebih **efisien, aman, dan mudah dibaca** tanpa mengubah struktur alur aplikasi utamanya. Peningkatan ini juga akan mengatasi kemungkinan masalah `ValueError` dari PaddleOCR saat dijalankan di lingkungan seperti Hugging Face Spaces.
|
4 |
+
|
5 |
+
Perubahan utama yang saya lakukan adalah:
|
6 |
+
|
7 |
+
1. **Mengatasi Error (`ValueError`)**: Penyebab paling umum dari error `Failed to parse program_desc` di Hugging Face adalah ketidakcocokan dengan GPU. Saya mengubah `use_gpu=True` menjadi `use_gpu=False`. CPU inference sudah cukup cepat untuk aplikasi ini dan jauh lebih stabil di lingkungan hosting gratis.
|
8 |
+
2. **Efisiensi dengan Caching**: Model OCR (PaddleOCR) sekarang di-load hanya sekali menggunakan `@st.cache_resource`. Ini akan membuat aplikasi merespons lebih cepat setelah pemuatan pertama.
|
9 |
+
3. **Manajemen State (`st.session_state`)**: Hasil OCR dan ekstraksi data sekarang disimpan di `st.session_state`. Ini mencegah aplikasi menjalankan ulang proses OCR yang lambat setiap kali pengguna berinteraksi dengan widget lain, sehingga memberikan pengalaman yang lebih lancar.
|
10 |
+
4. **Keamanan API Key**: *Hardcoding* API key sangat tidak aman. Kode yang dibenahi menggunakan `st.secrets` untuk mengelola API key, yang merupakan praktik terbaik di Streamlit.
|
11 |
+
5. **Struktur Kode (Fungsionalisasi)**: Logika yang kompleks seperti proses OCR, ekstraksi key-value, dan kalkulasi grade dipecah menjadi fungsi-fungsi terpisah. Ini membuat kode utama lebih bersih, mudah dibaca, dan dipelihara.
|
12 |
+
6. **Komentar dan Docstring**: Saya menambahkan lebih banyak komentar dan *docstring* untuk menjelaskan setiap bagian kode, sesuai permintaan Anda agar kodenya "sama atau lebih panjang" dengan tujuan yang jelas.
|
13 |
+
|
14 |
+
Berikut adalah kode yang telah dibenahi.
|
15 |
+
|
16 |
+
-----
|
17 |
+
|
18 |
+
### Kode yang Telah Dibenahi
|
19 |
+
|
20 |
+
```python
|
21 |
+
# ==============================================================================
|
22 |
+
# 1. IMPORT LIBRARY
|
23 |
+
# ==============================================================================
|
24 |
import streamlit as st
|
25 |
import cv2
|
26 |
import numpy as np
|
27 |
import re
|
|
|
28 |
import pandas as pd
|
29 |
from PIL import Image
|
30 |
import time
|
31 |
from paddleocr import PaddleOCR, draw_ocr
|
|
|
32 |
import openai
|
33 |
|
34 |
+
# ==============================================================================
|
35 |
+
# 2. KONFIGURASI APLIKASI
|
36 |
+
# ==============================================================================
|
37 |
+
# Konfigurasi halaman Streamlit (sebaiknya dipanggil sekali di awal)
|
38 |
+
st.set_page_config(
|
39 |
+
page_title="Nutri-Grade Calculator",
|
40 |
+
page_icon="🍏",
|
41 |
+
layout="centered",
|
42 |
+
initial_sidebar_state="auto"
|
43 |
+
)
|
44 |
+
|
45 |
+
# --- Konfigurasi Kunci API dan Model ---
|
46 |
+
# Menggunakan st.secrets untuk keamanan, jangan hardcode kunci API!
|
47 |
+
# Buat file .streamlit/secrets.toml di repo Hugging Face Anda.
|
48 |
+
# Isinya:
|
49 |
+
# OPENAI_API_KEY = "sk-or-v1-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
|
50 |
+
try:
|
51 |
+
openai.api_key = st.secrets["OPENAI_API_KEY"]
|
52 |
+
except (KeyError, FileNotFoundError):
|
53 |
+
st.error("Kunci API OpenRouter tidak ditemukan. Harap atur di st.secrets.")
|
54 |
+
st.stop()
|
55 |
+
|
56 |
openai.api_base = "https://openrouter.ai/api/v1"
|
57 |
+
AI_MODEL_NAME = "qwen/qwen2.5-vl-72b-instruct:free"
|
58 |
|
59 |
+
# --- Variabel Global dan Konstanta ---
|
60 |
+
TARGET_KEYS = {
|
61 |
+
"gula": ["gula", "sugar"],
|
62 |
+
"takaran saji": ["takaran saji", "serving size"],
|
63 |
+
"lemak jenuh": ["lemak jenuh", "saturated fat"]
|
64 |
+
}
|
65 |
|
66 |
+
# ==============================================================================
|
67 |
+
# 3. FUNGSI-FUNGSI UTAMA
|
68 |
+
# ==============================================================================
|
69 |
+
|
70 |
+
@st.cache_resource
|
71 |
+
def load_ocr_model():
|
72 |
+
"""
|
73 |
+
Memuat model PaddleOCR dan menyimpannya di cache.
|
74 |
+
Menggunakan CPU untuk kompatibilitas yang lebih baik di Hugging Face Spaces.
|
75 |
+
"""
|
76 |
+
print("Memuat model PaddleOCR...")
|
77 |
+
# PENTING: use_gpu=False untuk stabilitas di environment tanpa GPU yang terkonfigurasi.
|
78 |
+
# Ini adalah perbaikan utama untuk error 'Failed to parse program_desc'.
|
79 |
+
return PaddleOCR(use_gpu=False, lang='id', cls=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
def parse_numeric_value(text: str) -> float:
|
82 |
+
"""
|
83 |
+
Membersihkan string dan mengubahnya menjadi float.
|
84 |
+
Contoh: "15g" -> 15.0 atau "Sekitar 12.5" -> 12.5
|
85 |
+
"""
|
86 |
+
if not isinstance(text, str):
|
87 |
+
return 0.0
|
88 |
+
# Mengambil semua digit, titik, dan tanda minus
|
89 |
cleaned = re.sub(r"[^\d\.\-]", "", text)
|
90 |
try:
|
91 |
return float(cleaned)
|
92 |
+
except (ValueError, TypeError):
|
93 |
return 0.0
|
94 |
|
95 |
+
def perform_ocr(image_path: str, ocr_model) -> list:
|
96 |
+
"""
|
97 |
+
Melakukan OCR pada gambar dan mengembalikan hasil dalam format yang terstruktur.
|
98 |
+
"""
|
99 |
+
if not image_path:
|
100 |
+
return []
|
101 |
+
|
102 |
+
result = ocr_model.ocr(image_path, cls=True)
|
103 |
+
if not result or not result[0]:
|
104 |
+
return []
|
105 |
+
|
106 |
+
ocr_list = []
|
107 |
+
for line in result[0]:
|
108 |
+
box = line[0]
|
109 |
+
text, score = line[1]
|
110 |
+
xs = [pt[0] for pt in box]
|
111 |
+
ys = [pt[1] for pt in box]
|
112 |
+
ocr_list.append({
|
113 |
+
"text": text,
|
114 |
+
"box": box,
|
115 |
+
"score": score,
|
116 |
+
"center_x": sum(xs) / len(xs),
|
117 |
+
"center_y": sum(ys) / len(ys),
|
118 |
+
"height": max(ys) - min(ys)
|
119 |
+
})
|
120 |
+
# Urutkan berdasarkan posisi vertikal (atas ke bawah)
|
121 |
+
return sorted(ocr_list, key=lambda x: x["center_y"])
|
122 |
+
|
123 |
+
def extract_key_values(ocr_data: list, target_keys: dict) -> dict:
|
124 |
+
"""
|
125 |
+
Mengekstrak pasangan key-value dari data OCR yang telah diproses.
|
126 |
+
"""
|
127 |
+
extracted = {}
|
128 |
+
|
129 |
+
# Pass 1: Mencari key yang diikuti oleh titik dua (contoh: "Gula: 10g")
|
130 |
+
for item in ocr_data:
|
131 |
+
txt_lower = item["text"].lower()
|
132 |
+
if ":" in txt_lower:
|
133 |
+
parts = txt_lower.split(":", 1)
|
134 |
+
key_candidate, value_candidate = parts[0].strip(), parts[1].strip()
|
135 |
+
|
136 |
+
for canonical, variants in target_keys.items():
|
137 |
+
if canonical.capitalize() not in extracted:
|
138 |
+
for variant in variants:
|
139 |
+
if variant in key_candidate:
|
140 |
+
clean_value = re.sub(r"[^\d\.\-]", "", value_candidate)
|
141 |
+
if clean_value and clean_value != ".":
|
142 |
+
extracted[canonical.capitalize()] = clean_value
|
143 |
+
break
|
144 |
+
|
145 |
+
# Pass 2: Fallback, mencari nilai yang paling dekat di sebelah kanan key
|
146 |
+
for item in ocr_data:
|
147 |
+
txt_lower = item["text"].lower()
|
148 |
+
for canonical, variants in target_keys.items():
|
149 |
+
if canonical.capitalize() not in extracted:
|
150 |
+
for variant in variants:
|
151 |
+
if variant in txt_lower:
|
152 |
+
key_center_y, key_center_x, key_height = item["center_y"], item["center_x"], item["height"]
|
153 |
+
best_candidate = None
|
154 |
+
min_horizontal_dist = float('inf')
|
155 |
+
|
156 |
+
for other in ocr_data:
|
157 |
+
# Cari kandidat di sebelah kanan dan sejajar secara vertikal
|
158 |
+
is_aligned_y = abs(other["center_y"] - key_center_y) < key_height * 0.75
|
159 |
+
is_to_the_right = other["center_x"] > key_center_x
|
160 |
+
|
161 |
+
if item != other and is_aligned_y and is_to_the_right:
|
162 |
+
horizontal_dist = other["center_x"] - key_center_x
|
163 |
+
if horizontal_dist < min_horizontal_dist:
|
164 |
+
min_horizontal_dist = horizontal_dist
|
165 |
+
best_candidate = other
|
166 |
+
|
167 |
+
if best_candidate:
|
168 |
+
raw_value = best_candidate["text"]
|
169 |
+
clean_value = re.sub(r"[^\d\.\-]", "", raw_value)
|
170 |
+
if clean_value and clean_value != ".":
|
171 |
+
extracted[canonical.capitalize()] = clean_value
|
172 |
+
break # Pindah ke canonical key berikutnya
|
173 |
+
return extracted
|
174 |
+
|
175 |
+
def calculate_final_grade(sugar_norm: float, fat_norm: float) -> (str, str, str):
|
176 |
+
"""
|
177 |
+
Menghitung grade untuk gula, lemak jenuh, dan grade akhir.
|
178 |
+
"""
|
179 |
+
thresholds = {
|
180 |
+
"sugar": {"A": 1.0, "B": 5.0, "C": 10.0},
|
181 |
+
"fat": {"A": 0.7, "B": 1.2, "C": 2.8}
|
182 |
+
}
|
183 |
+
grade_scores = {"A": 1, "B": 2, "C": 3, "D": 4}
|
184 |
+
|
185 |
+
def get_grade(value, nutrient_type):
|
186 |
+
if value <= thresholds[nutrient_type]["A"]: return "A"
|
187 |
+
if value <= thresholds[nutrient_type]["B"]: return "B"
|
188 |
+
if value <= thresholds[nutrient_type]["C"]: return "C"
|
189 |
+
return "D"
|
190 |
+
|
191 |
+
sugar_grade = get_grade(sugar_norm, "sugar")
|
192 |
+
fat_grade = get_grade(fat_norm, "fat")
|
193 |
+
|
194 |
+
worst_score = max(grade_scores[sugar_grade], grade_scores[fat_grade])
|
195 |
+
final_grade = next(grade for grade, score in grade_scores.items() if score == worst_score)
|
196 |
+
|
197 |
+
return f"Grade {sugar_grade}", f"Grade {fat_grade}", f"Grade {final_grade}"
|
198 |
+
|
199 |
+
def generate_nutrition_advice(data: dict) -> str:
|
200 |
+
"""
|
201 |
+
Membuat prompt dan memanggil API LLM untuk mendapatkan saran nutrisi.
|
202 |
+
"""
|
203 |
+
nutrition_prompt = f"""
|
204 |
+
Anda adalah seorang ahli gizi dari Indonesia yang ramah, komunikatif, dan berpengalaman.
|
205 |
+
Berikut adalah data nutrisi sebuah produk makanan:
|
206 |
+
- Takaran Saji: {data['serving_size']:.2f} g/ml
|
207 |
+
- Kandungan Gula (setelah normalisasi per 100g): {data['sugar_norm']:.2f} g
|
208 |
+
- Kandungan Lemak Jenuh (setelah normalisasi per 100g): {data['fat_norm']:.2f} g
|
209 |
+
- Grade Gula: {data['sugar_grade']}
|
210 |
+
- Grade Lemak Jenuh: {data['fat_grade']}
|
211 |
+
- Grade Akhir Produk: {data['final_grade']}
|
212 |
+
|
213 |
+
Tugas Anda:
|
214 |
+
Berikan saran nutrisi yang informatif dalam satu paragraf pendek (sekitar 50-100 kata).
|
215 |
+
Gunakan bahasa yang bersahabat dan mudah dimengerti. Jelaskan secara ringkas arti dari data nutrisi di atas,
|
216 |
+
dampak kesehatan terkait, dan berikan tips praktis untuk menjaga pola makan seimbang.
|
217 |
+
"""
|
218 |
+
st.write("Tunggu sebentar, Qwen si AI nutritionist sedang memproses penjelasannya... 🤖")
|
219 |
+
try:
|
220 |
+
completion = openai.ChatCompletion.create(
|
221 |
+
model=AI_MODEL_NAME,
|
222 |
+
messages=[{"role": "user", "content": nutrition_prompt}]
|
223 |
+
)
|
224 |
+
return completion.choices[0].message.content
|
225 |
+
except Exception as e:
|
226 |
+
return f"Gagal mendapatkan saran dari Qwen: {e}"
|
227 |
+
|
228 |
+
def display_colored_grade(grade_text: str):
|
229 |
+
"""
|
230 |
+
Menampilkan grade akhir dengan warna latar yang sesuai.
|
231 |
+
"""
|
232 |
+
color_map = {
|
233 |
+
"Grade A": "#2ecc71", # Hijau
|
234 |
+
"Grade B": "#f1c40f", # Kuning
|
235 |
+
"Grade C": "#e67e22", # Oranye
|
236 |
+
"Grade D": "#e74c3c" # Merah
|
237 |
+
}
|
238 |
+
bg_color = color_map.get(grade_text, "#7f8c8d") # Default abu-abu
|
239 |
+
|
240 |
+
html_code = f"""
|
241 |
+
<div style="
|
242 |
+
background-color: {bg_color};
|
243 |
+
padding: 15px;
|
244 |
+
border-radius: 8px;
|
245 |
+
margin-top: 10px;
|
246 |
+
font-weight: bold;
|
247 |
+
color: white;
|
248 |
+
text-align: center;
|
249 |
+
font-size: 20px;
|
250 |
+
">
|
251 |
+
{grade_text}
|
252 |
+
</div>
|
253 |
+
"""
|
254 |
+
st.markdown(html_code, unsafe_allow_html=True)
|
255 |
+
|
256 |
+
# ==============================================================================
|
257 |
+
# 4. TAMPILAN ANTARMUKA (USER INTERFACE)
|
258 |
+
# ==============================================================================
|
259 |
+
|
260 |
+
# --- Judul dan Deskripsi ---
|
261 |
+
st.title("🍏 Nutri-Grade Label & Grade Calculator")
|
262 |
+
st.caption("Aplikasi prototipe untuk menganalisis dan memberi grade pada label nutrisi produk, terinspirasi oleh Nutri-Grade Singapura. Refresh halaman jika terjadi masalah.")
|
263 |
+
|
264 |
+
# --- Petunjuk Penggunaan dan Info ---
|
265 |
+
with st.expander("Petunjuk Penggunaan 📝"):
|
266 |
+
st.markdown("""
|
267 |
+
1. **Upload Gambar**: Unggah gambar tabel gizi produk. Jika dari ponsel, Anda bisa langsung menggunakan kamera.
|
268 |
+
2. **Deteksi Teks (OCR)**: Sistem akan secara otomatis mendeteksi teks dan angka pada gambar.
|
269 |
+
3. **Koreksi Manual**: Periksa hasil deteksi. Jika ada yang kurang tepat, Anda bisa memperbaikinya di formulir.
|
270 |
+
4. **Hitung Grade**: Klik tombol "Hitung" untuk melihat hasil analisis, grade, dan saran nutrisi.
|
271 |
+
""")
|
272 |
+
|
273 |
+
with st.expander("⚠️ Harap Diperhatikan"):
|
274 |
+
st.markdown("""
|
275 |
+
- Aplikasi ini masih dalam tahap **pengembangan (prototipe)**.
|
276 |
+
- Hasil ekstraksi otomatis mungkin tidak 100% akurat. **Selalu verifikasi dengan label fisik**.
|
277 |
+
- Dijalankan pada server gratis, mohon maaf jika terkadang lambat atau mengalami kendala.
|
278 |
+
- Kode sumber tersedia di [Hugging Face](https://huggingface.co/spaces/tataaditya/nutri-grade). Kontribusi dan feedback sangat kami hargai.
|
279 |
+
- Referensi utama: [Health Promotion Board Singapore](https://www.hpb.gov.sg/docs/default-source/pdf/nutri-grade-ci-guide_eng-only67e4e36349ad4274bfdb22236872336d.pdf).
|
280 |
+
""")
|
281 |
+
|
282 |
+
# --- Inisialisasi Model OCR ---
|
283 |
+
ocr_model = load_ocr_model()
|
284 |
|
285 |
# --- STEP 1: Upload Gambar ---
|
286 |
+
uploaded_file = st.file_uploader(
|
287 |
+
"Upload gambar tabel gizi di sini (JPG/PNG)",
|
288 |
+
type=["jpg", "jpeg", "png"]
|
289 |
+
)
|
290 |
+
|
291 |
if uploaded_file is not None:
|
292 |
+
# Menggunakan session state untuk menyimpan hasil agar tidak perlu diulang
|
293 |
+
if 'last_uploaded_file' not in st.session_state or st.session_state.last_uploaded_file != uploaded_file.name:
|
294 |
+
st.session_state.last_uploaded_file = uploaded_file.name
|
295 |
+
st.session_state.ocr_data = None
|
296 |
+
st.session_state.extracted_data = {}
|
297 |
+
|
298 |
+
# Konversi dan tampilkan gambar
|
299 |
+
image_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
|
300 |
+
img = cv2.imdecode(image_bytes, 1)
|
301 |
+
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
302 |
+
st.image(img_rgb, caption="Gambar yang diunggah", use_column_width=True)
|
303 |
+
|
304 |
+
# Simpan gambar sementara untuk diproses OCR
|
305 |
img_path = "uploaded_image.jpg"
|
306 |
cv2.imwrite(img_path, img)
|
307 |
|
308 |
+
# --- STEP 2: Proses OCR (hanya jika belum ada datanya) ---
|
309 |
+
if st.session_state.ocr_data is None:
|
310 |
+
with st.spinner("Membaca teks dari gambar... Ini mungkin memakan waktu beberapa detik."):
|
311 |
+
start_time = time.time()
|
312 |
+
st.session_state.ocr_data = perform_ocr(img_path, ocr_model)
|
313 |
+
ocr_time = time.time() - start_time
|
314 |
+
|
315 |
+
if not st.session_state.ocr_data:
|
316 |
+
st.error("OCR tidak dapat menemukan teks apapun pada gambar. Coba gambar yang lebih jelas.")
|
317 |
+
st.stop()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
318 |
else:
|
319 |
+
st.success(f"OCR berhasil! Ditemukan {len(st.session_state.ocr_data)} baris teks dalam {ocr_time:.2f} detik.")
|
320 |
+
st.session_state.extracted_data = extract_key_values(st.session_state.ocr_data, TARGET_KEYS)
|
321 |
|
322 |
+
# Tampilkan hasil OCR dengan bounding box untuk referensi
|
323 |
+
with st.expander("Lihat Hasil Deteksi Teks (OCR)"):
|
324 |
+
boxes_ocr = [line["box"] for line in st.session_state.ocr_data]
|
325 |
+
texts_ocr = [line["text"] for line in st.session_state.ocr_data]
|
326 |
+
scores_ocr = [line["score"] for line in st.session_state.ocr_data]
|
327 |
+
# Gunakan font default jika simfang tidak ada
|
328 |
+
try:
|
329 |
+
im_show = draw_ocr(Image.open(img_path).convert("RGB"), boxes_ocr, texts_ocr, scores_ocr, font_path="simfang.ttf")
|
330 |
+
except:
|
331 |
+
im_show = draw_ocr(Image.open(img_path).convert("RGB"), boxes_ocr, texts_ocr, scores_ocr)
|
332 |
im_show = Image.fromarray(im_show)
|
333 |
st.image(im_show, caption="Hasil OCR dengan Bounding Boxes", use_column_width=True)
|
334 |
|
335 |
+
# --- STEP 3: Koreksi Manual ---
|
336 |
+
st.markdown("---")
|
337 |
+
st.subheader("Verifikasi & Koreksi Data")
|
338 |
+
st.info("Periksa dan koreksi nilai yang diekstrak jika perlu. Masukkan **hanya angka** (gunakan titik untuk desimal).")
|
339 |
+
|
340 |
+
with st.form("correction_form"):
|
341 |
+
corrected_data = {}
|
342 |
+
# Ambil nilai dari session state sebagai default
|
343 |
+
extracted_data = st.session_state.extracted_data
|
344 |
+
|
345 |
+
for key in TARGET_KEYS.keys():
|
346 |
+
key_cap = key.capitalize()
|
347 |
+
# Ambil nilai yang sudah diekstrak, jika tidak ada, biarkan kosong
|
348 |
+
default_val = extracted_data.get(key_cap, "")
|
349 |
+
corrected_data[key_cap] = st.text_input(
|
350 |
+
label=f"**{key_cap}** (angka saja)",
|
351 |
+
value=default_val
|
352 |
+
)
|
353 |
+
|
354 |
+
submit_button = st.form_submit_button("✅ Hitung Grade & Dapatkan Saran")
|
355 |
|
356 |
+
# --- STEP 4: Kalkulasi dan Tampilan Hasil ---
|
357 |
+
if submit_button:
|
358 |
+
try:
|
359 |
+
# Ambil nilai dari form yang sudah dikoreksi
|
360 |
+
serving_size = parse_numeric_value(corrected_data.get("Takaran saji", "100"))
|
361 |
sugar_value = parse_numeric_value(corrected_data.get("Gula", "0"))
|
362 |
+
fat_value = parse_numeric_value(corrected_data.get("Lemak jenuh", "0"))
|
363 |
+
|
364 |
+
if serving_size <= 0:
|
365 |
+
st.error("Takaran Saji harus lebih besar dari nol untuk melakukan normalisasi.")
|
366 |
+
st.stop()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
367 |
|
368 |
+
# Normalisasi ke per 100g/ml
|
369 |
+
sugar_norm = (sugar_value / serving_size) * 100
|
370 |
+
fat_norm = (fat_value / serving_size) * 100
|
371 |
+
|
372 |
# Hitung Grade
|
373 |
+
sugar_grade, fat_grade, final_grade = calculate_final_grade(sugar_norm, fat_norm)
|
374 |
+
|
375 |
+
st.markdown("---")
|
376 |
+
st.subheader("Hasil Analisis Nutrisi")
|
377 |
+
|
378 |
+
col1, col2 = st.columns(2)
|
379 |
+
with col1:
|
380 |
+
st.write("**Hasil Normalisasi per 100 g/ml**")
|
381 |
+
df_tabel = pd.DataFrame({
|
382 |
+
"Nutrisi": ["Gula Total", "Lemak Jenuh"],
|
383 |
+
"Nilai (per 100 g/ml)": [f"{sugar_norm:.2f} g", f"{fat_norm:.2f} g"]
|
384 |
+
})
|
385 |
+
st.table(df_tabel)
|
386 |
+
|
387 |
+
with col2:
|
388 |
+
st.write("**Hasil Penilaian Grade**")
|
389 |
+
st.metric(label="Grade Gula", value=sugar_grade)
|
390 |
+
st.metric(label="Grade Lemak Jenuh", value=fat_grade)
|
391 |
+
|
392 |
+
st.write("**Grade Akhir Produk**")
|
393 |
+
display_colored_grade(final_grade)
|
394 |
+
|
395 |
+
st.markdown("---")
|
396 |
+
st.subheader("Saran dari Ahli Gizi AI")
|
397 |
+
|
398 |
+
advice_data = {
|
399 |
+
"serving_size": serving_size, "sugar_norm": sugar_norm, "fat_norm": fat_norm,
|
400 |
+
"sugar_grade": sugar_grade, "fat_grade": fat_grade, "final_grade": final_grade
|
401 |
+
}
|
402 |
+
nutrition_advice = generate_nutrition_advice(advice_data)
|
403 |
+
st.success(nutrition_advice)
|
404 |
+
|
405 |
+
except Exception as e:
|
406 |
+
st.error(f"Terjadi kesalahan saat perhitungan: {e}")
|
407 |
+
|
408 |
+
# ==============================================================================
|
409 |
+
# 5. FOOTER
|
410 |
+
# ==============================================================================
|
411 |
+
st.markdown("---")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
412 |
|
413 |
# --- Tampilan Tim Pengembang ---
|
414 |
st.markdown("""
|
415 |
+
<div style="border: 1px solid #dfe6e9; padding: 15px; border-radius: 10px; margin-top: 20px; background-color: #fafafa;">
|
416 |
+
<h4 style="text-align: center; color: #007BFF;">Tim Pengembang</h4>
|
417 |
+
<p><strong>Nicholas Dominic</strong>, Mentor - <a href="https://www.linkedin.com/in/nicholas-dominic" target="_blank">LinkedIn</a></p>
|
418 |
+
<p><strong>Tata Aditya Pamungkas</strong>, Machine Learning - <a href="https://www.linkedin.com/in/tata-aditya-pamungkas" target="_blank">LinkedIn</a></p>
|
419 |
+
<p><strong>Raihan Hafiz</strong>, Web Dev - <a href="https://www.linkedin.com/in/m-raihan-hafiz-91a368186" target="_blank">LinkedIn</a></p>
|
420 |
+
</div>
|
421 |
""", unsafe_allow_html=True)
|
422 |
|
423 |
+
with st.expander("Rencana Pengembangan & Inovasi Selanjutnya 🚀"):
|
424 |
st.markdown("""
|
425 |
+
1. **Infrastruktur yang Lebih Baik**: Migrasi ke server berbayar untuk meningkatkan kecepatan, stabilitas, dan kapasitas pengguna.
|
426 |
+
2. **Fitur Food Recall**: Mengembangkan fitur untuk mencatat asupan makanan harian (*real food*), bukan hanya produk kemasan. Ide ini divalidasi setelah diskusi dengan nutritionist [Firza Marhamah](https://www.linkedin.com/in/firza-marhamah).
|
427 |
+
3. **Kalkulator Kalori Harian**: Menambahkan fitur penghitung kebutuhan kalori harian yang dipersonalisasi berdasarkan data pengguna (usia, berat badan, tinggi badan, tingkat aktivitas).
|
428 |
+
""")
|
429 |
+
```)
|