Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,812 +1,408 @@
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
import re
|
5 |
-
import os
|
6 |
import pandas as pd
|
7 |
from PIL import Image
|
8 |
import time
|
9 |
-
import requests
|
10 |
-
import json
|
11 |
from paddleocr import PaddleOCR, draw_ocr
|
|
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
# Konfigurasi Streamlit
|
18 |
st.set_page_config(
|
19 |
-
page_title="Nutri-Grade
|
20 |
-
page_icon="
|
21 |
-
layout="
|
22 |
-
initial_sidebar_state="
|
23 |
)
|
24 |
|
25 |
-
#
|
26 |
-
st.
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
st.markdown("""
|
43 |
-
1. Aplikasi ini masih dalam Pengembangan.
|
44 |
-
2. Hasil ekstraksi hanya sebagai gambaran; silakan koreksi bila diperlukan.
|
45 |
-
3. Hosting gratisan, jadi mungkin ada beberapa kendala.
|
46 |
-
4. Kode dapat diakses di Hugging Face untuk kontribusi atau feedback.
|
47 |
-
5. Referensi: [Health Promotion Board Singapura](https://www.hpb.gov.sg/docs/default-source/pdf/nutri-grade-ci-guide_eng-only67e4e36349ad4274bfdb22236872336d.pdf)
|
48 |
-
""")
|
49 |
|
50 |
-
# Cache untuk inisialisasi OCR model
|
51 |
@st.cache_resource
|
52 |
-
def
|
53 |
-
"""
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
except Exception as e2:
|
69 |
-
st.error(f"Gagal inisialisasi OCR: {e2}")
|
70 |
-
return None, f"Error: {e2}"
|
71 |
-
|
72 |
-
# Fungsi untuk membersihkan nilai numerik
|
73 |
-
def parse_numeric_value(text):
|
74 |
-
"""Parse nilai numerik dari string (contoh: '15g' → 15.0)"""
|
75 |
-
if not text:
|
76 |
-
return 0.0
|
77 |
-
|
78 |
-
# Hapus semua karakter non-digit kecuali titik dan minus
|
79 |
-
cleaned = re.sub(r"[^\d\.\-]", "", str(text))
|
80 |
-
|
81 |
-
# Handle kasus khusus
|
82 |
-
if not cleaned or cleaned == "." or cleaned == "-":
|
83 |
return 0.0
|
84 |
-
|
|
|
85 |
try:
|
86 |
return float(cleaned)
|
87 |
except (ValueError, TypeError):
|
88 |
return 0.0
|
89 |
|
90 |
-
|
91 |
-
def get_nutrition_advice(serving_size, sugar_norm, fat_norm, sugar_grade, fat_grade, final_grade):
|
92 |
-
"""Mendapatkan saran nutrisi dari Qwen melalui OpenRouter API"""
|
93 |
-
|
94 |
-
nutrition_prompt = f"""
|
95 |
-
Anda adalah ahli gizi yang ramah, komunikatif, dan berpengalaman.
|
96 |
-
Data nutrisi:
|
97 |
-
- Takaran saji: {serving_size} g/ml
|
98 |
-
- Kandungan Gula (per 100 g/ml): {sugar_norm:.2f} g
|
99 |
-
- Kandungan Lemak Jenuh (per 100 g/ml): {fat_norm:.2f} g
|
100 |
-
- Grade Gula: {sugar_grade}
|
101 |
-
- Grade Lemak Jenuh: {fat_grade}
|
102 |
-
- Grade Akhir: {final_grade}
|
103 |
-
|
104 |
-
Berdasarkan data tersebut, berikan saran nutrisi yang informatif dalam satu paragraf pendek (50-100 kata).
|
105 |
-
Jelaskan secara ringkas dengan mengulang data nutrisi, dampak kesehatannya, dan berikan tips praktis untuk menjaga pola makan seimbang dengan bahasa yang bersahabat.
|
106 |
"""
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
}
|
|
|
112 |
|
113 |
-
|
114 |
-
"
|
115 |
-
"
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
try:
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
json=payload,
|
130 |
-
timeout=30
|
131 |
)
|
132 |
-
|
133 |
-
if response.status_code == 200:
|
134 |
-
data = response.json()
|
135 |
-
return data["choices"][0]["message"]["content"]
|
136 |
-
else:
|
137 |
-
return f"Error: HTTP {response.status_code} - {response.text}"
|
138 |
-
|
139 |
-
except requests.exceptions.Timeout:
|
140 |
-
return "Error: Request timeout. Silakan coba lagi."
|
141 |
-
except requests.exceptions.RequestException as e:
|
142 |
-
return f"Error: {str(e)}"
|
143 |
except Exception as e:
|
144 |
-
return f"
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
# --- STEP 1: Upload Gambar ---
|
158 |
-
st.header("📸 Upload Gambar Tabel Gizi")
|
159 |
uploaded_file = st.file_uploader(
|
160 |
-
"
|
161 |
-
type=["jpg", "jpeg", "png"]
|
162 |
-
help="Upload gambar tabel gizi untuk dianalisis"
|
163 |
)
|
164 |
|
165 |
if uploaded_file is not None:
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
-
if
|
172 |
-
st.error("
|
173 |
st.stop()
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
# --- STEP 2: OCR pada Gambar ---
|
185 |
-
st.header("🔍 Proses OCR")
|
186 |
-
|
187 |
-
if st.button("Mulai Analisis OCR", type="primary"):
|
188 |
-
with st.spinner("Melakukan OCR pada gambar..."):
|
189 |
-
start_time = time.time()
|
190 |
-
try:
|
191 |
-
ocr_result = st.session_state.ocr_model.ocr(temp_img_path, cls=True)
|
192 |
-
ocr_time = time.time() - start_time
|
193 |
-
st.success(f"OCR selesai dalam {ocr_time:.2f} detik")
|
194 |
-
|
195 |
-
if not ocr_result or not ocr_result[0]:
|
196 |
-
st.error("OCR tidak menemukan teks pada gambar!")
|
197 |
-
st.stop()
|
198 |
-
|
199 |
-
# Ekstrak data OCR
|
200 |
-
ocr_data = ocr_result[0]
|
201 |
-
ocr_list = []
|
202 |
-
|
203 |
-
for line in ocr_data:
|
204 |
-
if len(line) >= 2:
|
205 |
-
box = line[0]
|
206 |
-
text = line[1][0] if len(line[1]) >= 1 else ""
|
207 |
-
score = line[1][1] if len(line[1]) >= 2 else 0.0
|
208 |
-
|
209 |
-
if box and len(box) >= 4:
|
210 |
-
xs = [pt[0] for pt in box]
|
211 |
-
ys = [pt[1] for pt in box]
|
212 |
-
center_x = sum(xs) / len(xs)
|
213 |
-
center_y = sum(ys) / len(ys)
|
214 |
-
|
215 |
-
ocr_list.append({
|
216 |
-
"text": text,
|
217 |
-
"box": box,
|
218 |
-
"score": score,
|
219 |
-
"center_x": center_x,
|
220 |
-
"center_y": center_y,
|
221 |
-
"height": max(ys) - min(ys)
|
222 |
-
})
|
223 |
-
|
224 |
-
# Sort berdasarkan posisi vertikal
|
225 |
-
ocr_list = sorted(ocr_list, key=lambda x: x["center_y"])
|
226 |
-
|
227 |
-
# Target keys untuk ekstraksi
|
228 |
-
target_keys = {
|
229 |
-
"gula": ["gula", "sugar", "sugars", "total sugar"],
|
230 |
-
"takaran saji": ["takaran saji", "serving size", "per serving", "sajian"],
|
231 |
-
"lemak jenuh": ["lemak jenuh", "saturated fat", "saturated", "sat fat"]
|
232 |
-
}
|
233 |
-
|
234 |
-
extracted = {}
|
235 |
-
|
236 |
-
# Pass 1: Ekstraksi dengan tanda titik dua
|
237 |
-
for item in ocr_list:
|
238 |
-
txt_lower = item["text"].lower()
|
239 |
-
if ":" in txt_lower:
|
240 |
-
parts = txt_lower.split(":")
|
241 |
-
if len(parts) >= 2:
|
242 |
-
key_candidate = parts[0].strip()
|
243 |
-
value_candidate = parts[-1].strip()
|
244 |
-
|
245 |
-
for canonical, variants in target_keys.items():
|
246 |
-
if canonical not in extracted:
|
247 |
-
for variant in variants:
|
248 |
-
if variant in key_candidate:
|
249 |
-
clean_value = re.sub(r"[^\d\.\-]", "", value_candidate)
|
250 |
-
if clean_value and clean_value not in ["", "."]:
|
251 |
-
extracted[canonical.capitalize()] = clean_value
|
252 |
-
break
|
253 |
-
|
254 |
-
# Pass 2: Fallback untuk key yang belum diekstrak
|
255 |
-
for item in ocr_list:
|
256 |
-
txt_lower = item["text"].lower()
|
257 |
-
for canonical, variants in target_keys.items():
|
258 |
-
if canonical.capitalize() not in extracted:
|
259 |
-
for variant in variants:
|
260 |
-
if variant in txt_lower:
|
261 |
-
key_center = (item["center_x"], item["center_y"])
|
262 |
-
key_height = item["height"]
|
263 |
-
best_candidate = None
|
264 |
-
min_dx = float('inf')
|
265 |
-
|
266 |
-
# Cari nilai di sebelah kanan
|
267 |
-
for other in ocr_list:
|
268 |
-
if other == item:
|
269 |
-
continue
|
270 |
-
if (other["center_x"] > key_center[0] and
|
271 |
-
abs(other["center_y"] - key_center[1]) < 0.5 * key_height):
|
272 |
-
dx = other["center_x"] - key_center[0]
|
273 |
-
if dx < min_dx:
|
274 |
-
min_dx = dx
|
275 |
-
best_candidate = other
|
276 |
-
|
277 |
-
if best_candidate:
|
278 |
-
raw_value = best_candidate["text"]
|
279 |
-
clean_value = re.sub(r"[^\d\.\-]", "", raw_value)
|
280 |
-
if clean_value and clean_value not in ["", "."]:
|
281 |
-
extracted[canonical.capitalize()] = clean_value
|
282 |
-
break
|
283 |
-
|
284 |
-
# Tampilkan hasil ekstraksi
|
285 |
-
if extracted:
|
286 |
-
st.subheader("📊 Hasil Ekstraksi")
|
287 |
-
col1, col2 = st.columns(2)
|
288 |
-
|
289 |
-
with col1:
|
290 |
-
st.write("**Data yang ditemukan:**")
|
291 |
-
for k, v in extracted.items():
|
292 |
-
st.write(f"• {k}: {v}")
|
293 |
-
|
294 |
-
with col2:
|
295 |
-
# Tampilkan gambar dengan bounding box
|
296 |
-
try:
|
297 |
-
boxes_ocr = [line["box"] for line in ocr_list]
|
298 |
-
texts_ocr = [line["text"] for line in ocr_list]
|
299 |
-
scores_ocr = [line["score"] for line in ocr_list]
|
300 |
-
|
301 |
-
# Gunakan font default jika simfang.ttf tidak tersedia
|
302 |
-
try:
|
303 |
-
im_show = draw_ocr(
|
304 |
-
Image.open(temp_img_path).convert("RGB"),
|
305 |
-
boxes_ocr, texts_ocr, scores_ocr,
|
306 |
-
font_path=None
|
307 |
-
)
|
308 |
-
except:
|
309 |
-
im_show = draw_ocr(
|
310 |
-
Image.open(temp_img_path).convert("RGB"),
|
311 |
-
boxes_ocr, texts_ocr, scores_ocr
|
312 |
-
)
|
313 |
-
|
314 |
-
im_show = Image.fromarray(im_show)
|
315 |
-
st.image(im_show, caption="Hasil OCR", use_column_width=True)
|
316 |
-
except Exception as e:
|
317 |
-
st.warning(f"Tidak dapat menampilkan bounding box: {e}")
|
318 |
-
else:
|
319 |
-
st.warning("Tidak ditemukan data nutrisi yang cocok. Silakan input manual.")
|
320 |
-
extracted = {}
|
321 |
-
|
322 |
-
# --- STEP 3: Koreksi Manual ---
|
323 |
-
st.header("✏️ Koreksi Data")
|
324 |
-
|
325 |
-
with st.form("correction_form"):
|
326 |
-
st.write("Silakan koreksi nilai jika diperlukan (hanya angka, tanpa satuan):")
|
327 |
-
|
328 |
-
col1, col2, col3 = st.columns(3)
|
329 |
-
|
330 |
-
with col1:
|
331 |
-
takaran_saji_val = str(parse_numeric_value(
|
332 |
-
extracted.get("Takaran saji", "100")
|
333 |
-
)) if "Takaran saji" in extracted else "100"
|
334 |
-
takaran_saji = st.text_input(
|
335 |
-
"Takaran Saji (g/ml)",
|
336 |
-
value=takaran_saji_val,
|
337 |
-
help="Masukkan takaran saji dalam gram atau ml"
|
338 |
-
)
|
339 |
-
|
340 |
-
with col2:
|
341 |
-
gula_val = str(parse_numeric_value(
|
342 |
-
extracted.get("Gula", "0")
|
343 |
-
)) if "Gula" in extracted else ""
|
344 |
-
gula = st.text_input(
|
345 |
-
"Gula (g)",
|
346 |
-
value=gula_val,
|
347 |
-
help="Masukkan kandungan gula dalam gram"
|
348 |
-
)
|
349 |
-
|
350 |
-
with col3:
|
351 |
-
lemak_jenuh_val = str(parse_numeric_value(
|
352 |
-
extracted.get("Lemak jenuh", "0")
|
353 |
-
)) if "Lemak jenuh" in extracted else ""
|
354 |
-
lemak_jenuh = st.text_input(
|
355 |
-
"Lemak Jenuh (g)",
|
356 |
-
value=lemak_jenuh_val,
|
357 |
-
help="Masukkan kandungan lemak jenuh dalam gram"
|
358 |
-
)
|
359 |
-
|
360 |
-
submit_button = st.form_submit_button("🧮 Hitung Grade",
|
361 |
-
type="primary",
|
362 |
-
use_container_width=True)
|
363 |
-
|
364 |
-
# --- STEP 4: Perhitungan Grade ---
|
365 |
-
if submit_button:
|
366 |
-
try:
|
367 |
-
serving_size = parse_numeric_value(takaran_saji)
|
368 |
-
sugar_value = parse_numeric_value(gula)
|
369 |
-
fat_value = parse_numeric_value(lemak_jenuh)
|
370 |
-
|
371 |
-
if serving_size <= 0:
|
372 |
-
st.error("Takaran saji harus lebih besar dari 0!")
|
373 |
-
st.stop()
|
374 |
-
|
375 |
-
# Normalisasi ke per 100g/ml
|
376 |
-
sugar_norm = (sugar_value / serving_size) * 100
|
377 |
-
fat_norm = (fat_value / serving_size) * 100
|
378 |
-
|
379 |
-
# Tampilkan hasil normalisasi
|
380 |
-
st.header("📈 Hasil Analisis")
|
381 |
-
|
382 |
-
col1, col2 = st.columns(2)
|
383 |
-
|
384 |
-
with col1:
|
385 |
-
st.subheader("📊 Tabel Normalisasi")
|
386 |
-
data_tabel = {
|
387 |
-
"Nutrisi": ["Gula", "Lemak Jenuh"],
|
388 |
-
"Nilai Original": [f"{sugar_value} g", f"{fat_value} g"],
|
389 |
-
"Per 100 g/ml": [f"{sugar_norm:.2f} g", f"{fat_norm:.2f} g"]
|
390 |
-
}
|
391 |
-
df_tabel = pd.DataFrame(data_tabel)
|
392 |
-
st.dataframe(df_tabel, use_container_width=True)
|
393 |
-
|
394 |
-
with col2:
|
395 |
-
st.subheader("🎯 Standar Grading")
|
396 |
-
st.write("**Gula (per 100g/ml):**")
|
397 |
-
st.write("• Grade A: ≤ 1.0 g")
|
398 |
-
st.write("• Grade B: ≤ 5.0 g")
|
399 |
-
st.write("• Grade C: ≤ 10.0 g")
|
400 |
-
st.write("• Grade D: > 10.0 g")
|
401 |
-
|
402 |
-
st.write("**Lemak Jenuh (per 100g/ml):**")
|
403 |
-
st.write("• Grade A: ≤ 0.7 g")
|
404 |
-
st.write("• Grade B: ≤ 1.2 g")
|
405 |
-
st.write("• Grade C: ≤ 2.8 g")
|
406 |
-
st.write("• Grade D: > 2.8 g")
|
407 |
-
|
408 |
-
# Hitung Grade
|
409 |
-
def grade_from_value(value, thresholds):
|
410 |
-
if value <= thresholds["A"]:
|
411 |
-
return "Grade A"
|
412 |
-
elif value <= thresholds["B"]:
|
413 |
-
return "Grade B"
|
414 |
-
elif value <= thresholds["C"]:
|
415 |
-
return "Grade C"
|
416 |
-
else:
|
417 |
-
return "Grade D"
|
418 |
-
|
419 |
-
thresholds_sugar = {"A": 1.0, "B": 5.0, "C": 10.0}
|
420 |
-
thresholds_fat = {"A": 0.7, "B": 1.2, "C": 2.8}
|
421 |
-
|
422 |
-
sugar_grade = grade_from_value(sugar_norm, thresholds_sugar)
|
423 |
-
fat_grade = grade_from_value(fat_norm, thresholds_fat)
|
424 |
-
|
425 |
-
# Tentukan grade akhir (yang terburuk)
|
426 |
-
grade_scores = {"Grade A": 1, "Grade B": 2, "Grade C": 3, "Grade D": 4}
|
427 |
-
worst_score = max(grade_scores[sugar_grade], grade_scores[fat_grade])
|
428 |
-
inverse_scores = {v: k for k, v in grade_scores.items()}
|
429 |
-
final_grade = inverse_scores[worst_score]
|
430 |
-
|
431 |
-
# Tampilkan grade dengan warna
|
432 |
-
st.subheader("🏆 Hasil Grading")
|
433 |
-
|
434 |
-
def get_grade_color(grade_text):
|
435 |
-
if grade_text == "Grade A":
|
436 |
-
return "#2ecc71", "white"
|
437 |
-
elif grade_text == "Grade B":
|
438 |
-
return "#f1c40f", "black"
|
439 |
-
elif grade_text == "Grade C":
|
440 |
-
return "#e67e22", "white"
|
441 |
-
else:
|
442 |
-
return "#e74c3c", "white"
|
443 |
-
|
444 |
-
col1, col2, col3 = st.columns(3)
|
445 |
-
|
446 |
-
with col1:
|
447 |
-
bg_color, text_color = get_grade_color(sugar_grade)
|
448 |
-
st.markdown(f"""
|
449 |
-
<div style="
|
450 |
-
background-color: {bg_color};
|
451 |
-
padding: 15px;
|
452 |
-
border-radius: 10px;
|
453 |
-
text-align: center;
|
454 |
-
color: {text_color};
|
455 |
-
font-weight: bold;
|
456 |
-
margin: 5px;
|
457 |
-
">
|
458 |
-
<h4 style="margin: 0; color: {text_color};">Gula</h4>
|
459 |
-
<p style="margin: 5px 0; color: {text_color};">{sugar_norm:.2f} g</p>
|
460 |
-
<h3 style="margin: 0; color: {text_color};">{sugar_grade}</h3>
|
461 |
-
</div>
|
462 |
-
""", unsafe_allow_html=True)
|
463 |
-
|
464 |
-
with col2:
|
465 |
-
bg_color, text_color = get_grade_color(fat_grade)
|
466 |
-
st.markdown(f"""
|
467 |
-
<div style="
|
468 |
-
background-color: {bg_color};
|
469 |
-
padding: 15px;
|
470 |
-
border-radius: 10px;
|
471 |
-
text-align: center;
|
472 |
-
color: {text_color};
|
473 |
-
font-weight: bold;
|
474 |
-
margin: 5px;
|
475 |
-
">
|
476 |
-
<h4 style="margin: 0; color: {text_color};">Lemak Jenuh</h4>
|
477 |
-
<p style="margin: 5px 0; color: {text_color};">{fat_norm:.2f} g</p>
|
478 |
-
<h3 style="margin: 0; color: {text_color};">{sugar_grade}</h3>
|
479 |
-
</div>
|
480 |
-
""", unsafe_allow_html=True)
|
481 |
-
|
482 |
-
with col3:
|
483 |
-
bg_color, text_color = get_grade_color(final_grade)
|
484 |
-
st.markdown(f"""
|
485 |
-
<div style="
|
486 |
-
background-color: {bg_color};
|
487 |
-
padding: 15px;
|
488 |
-
border-radius: 10px;
|
489 |
-
text-align: center;
|
490 |
-
color: {text_color};
|
491 |
-
font-weight: bold;
|
492 |
-
margin: 5px;
|
493 |
-
border: 3px solid #333;
|
494 |
-
">
|
495 |
-
<h4 style="margin: 0; color: {text_color};">Grade Akhir</h4>
|
496 |
-
<h2 style="margin: 10px 0; color: {text_color};">{final_grade}</h2>
|
497 |
-
</div>
|
498 |
-
""", unsafe_allow_html=True)
|
499 |
-
|
500 |
-
# --- STEP 5: Saran Nutrisi dari AI ---
|
501 |
-
st.header("🤖 Saran Nutrisi dari AI")
|
502 |
-
|
503 |
-
with st.spinner("Qwen AI sedang menganalisis data nutrisi Anda..."):
|
504 |
-
nutrition_advice = get_nutrition_advice(
|
505 |
-
serving_size, sugar_norm, fat_norm,
|
506 |
-
sugar_grade, fat_grade, final_grade
|
507 |
-
)
|
508 |
-
|
509 |
-
if nutrition_advice.startswith("Error"):
|
510 |
-
st.error(f"Gagal mendapatkan saran nutrisi: {nutrition_advice}")
|
511 |
-
st.info("Silakan coba lagi nanti atau hubungi tim pengembang.")
|
512 |
-
else:
|
513 |
-
st.success("Saran berhasil didapatkan!")
|
514 |
-
st.markdown(f"""
|
515 |
-
<div style="
|
516 |
-
background-color: #f8f9fa;
|
517 |
-
padding: 20px;
|
518 |
-
border-radius: 10px;
|
519 |
-
border-left: 5px solid #007BFF;
|
520 |
-
margin: 10px 0;
|
521 |
-
">
|
522 |
-
<h4>💡 Saran Nutrisi Personal</h4>
|
523 |
-
<p style="font-size: 16px; line-height: 1.6;">{nutrition_advice}</p>
|
524 |
-
</div>
|
525 |
-
""", unsafe_allow_html=True)
|
526 |
-
|
527 |
-
except Exception as e:
|
528 |
-
st.error(f"Terjadi kesalahan dalam perhitungan: {e}")
|
529 |
-
st.write("Silakan periksa kembali input data Anda.")
|
530 |
-
|
531 |
-
except Exception as e:
|
532 |
-
st.error(f"Terjadi kesalahan dalam proses OCR: {e}")
|
533 |
-
st.write("Silakan coba dengan gambar yang berbeda atau hubungi tim pengembang.")
|
534 |
-
|
535 |
-
# Cleanup file sementara
|
536 |
try:
|
537 |
-
|
538 |
-
os.remove(temp_img_path)
|
539 |
except:
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
st.error(f"Terjadi kesalahan dalam memproses gambar: {e}")
|
544 |
|
545 |
-
# ---
|
546 |
-
st.markdown("---")
|
547 |
-
st.
|
548 |
-
|
549 |
-
<h3 style="color: #007BFF; text-align: center;">👥 Tim Pengembang</h3>
|
550 |
-
<div style="display: flex; justify-content: space-around; flex-wrap: wrap;">
|
551 |
-
<div style="text-align: center; margin: 10px;">
|
552 |
-
<h4>Nicholas Dominic</h4>
|
553 |
-
<p><strong>Mentor</strong></p>
|
554 |
-
<a href="https://www.linkedin.com/in/nicholas-dominic" target="_blank">
|
555 |
-
<button style="background-color: #0077B5; color: white; border: none; padding: 8px 16px; border-radius: 5px; cursor: pointer;">
|
556 |
-
LinkedIn
|
557 |
-
</button>
|
558 |
-
</a>
|
559 |
-
</div>
|
560 |
-
<div style="text-align: center; margin: 10px;">
|
561 |
-
<h4>Tata Aditya Pamungkas</h4>
|
562 |
-
<p><strong>Machine Learning</strong></p>
|
563 |
-
<a href="https://www.linkedin.com/in/tata-aditya-pamungkas" target="_blank">
|
564 |
-
<button style="background-color: #0077B5; color: white; border: none; padding: 8px 16px; border-radius: 5px; cursor: pointer;">
|
565 |
-
LinkedIn
|
566 |
-
</button>
|
567 |
-
</a>
|
568 |
-
</div>
|
569 |
-
<div style="text-align: center; margin: 10px;">
|
570 |
-
<h4>Raihan Hafiz</h4>
|
571 |
-
<p><strong>Web Development</strong></p>
|
572 |
-
<a href="https://www.linkedin.com/in/m-raihan-hafiz-91a368186" target="_blank">
|
573 |
-
<button style="background-color: #0077B5; color: white; border: none; padding: 8px 16px; border-radius: 5px; cursor: pointer;">
|
574 |
-
LinkedIn
|
575 |
-
</button>
|
576 |
-
</a>
|
577 |
-
</div>
|
578 |
-
</div>
|
579 |
-
</div>
|
580 |
-
""", unsafe_allow_html=True)
|
581 |
|
582 |
-
with st.
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
- Rekomendasi menu harian yang seimbang
|
598 |
-
- Tracking progress dan pencapaian target nutrisi
|
599 |
-
|
600 |
-
4. **Integrasi AI yang Lebih Canggih**
|
601 |
-
- Analisis pola makan pengguna
|
602 |
-
- Prediksi risiko kesehatan berdasarkan riwayat konsumsi
|
603 |
-
- Chatbot nutrisi untuk konsultasi real-time
|
604 |
-
|
605 |
-
5. **Fitur Komunitas**
|
606 |
-
- Sharing resep makanan sehat
|
607 |
-
- Challenge dan kompetisi hidup sehat
|
608 |
-
- Forum diskusi dengan ahli gizi
|
609 |
-
""")
|
610 |
|
611 |
-
#
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
st.write("**Gula (per 100g/ml):**")
|
623 |
-
st.write("🟢 A: ≤ 1.0g | 🟡 B: ≤ 5.0g")
|
624 |
-
st.write("🟠 C: ≤ 10.0g | 🔴 D: > 10.0g")
|
625 |
-
|
626 |
-
st.write("**Lemak Jenuh (per 100g/ml):**")
|
627 |
-
st.write("🟢 A: ≤ 0.7g | 🟡 B: ≤ 1.2g")
|
628 |
-
st.write("🟠 C: ≤ 2.8g | 🔴 D: > 2.8g")
|
629 |
-
|
630 |
-
st.subheader("🔧 Status Sistem")
|
631 |
-
if st.session_state.get('ocr_model') is not None:
|
632 |
-
st.success("✅ OCR Model: Ready")
|
633 |
-
else:
|
634 |
-
st.error("❌ OCR Model: Not Ready")
|
635 |
-
|
636 |
-
st.success("✅ API: Connected")
|
637 |
-
st.info("🌐 Hosting: Hugging Face Spaces")
|
638 |
-
|
639 |
-
st.subheader("📱 Tips Penggunaan")
|
640 |
-
st.write("""
|
641 |
-
• Pastikan gambar jelas dan tidak buram
|
642 |
-
• Tabel gizi harus terlihat dengan baik
|
643 |
-
• Hindari gambar dengan pencahayaan buruk
|
644 |
-
• Untuk hasil terbaik, gunakan gambar portrait mode
|
645 |
-
""")
|
646 |
-
|
647 |
-
st.subheader("🆘 Bantuan")
|
648 |
-
st.write("Jika mengalami masalah:")
|
649 |
-
st.write("1. Refresh halaman")
|
650 |
-
st.write("2. Coba dengan gambar yang berbeda")
|
651 |
-
st.write("3. Hubungi tim pengembang")
|
652 |
|
653 |
-
#
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
.stButton > button {
|
661 |
-
width: 100%;
|
662 |
-
border-radius: 10px;
|
663 |
-
height: 3em;
|
664 |
-
font-weight: bold;
|
665 |
-
}
|
666 |
-
|
667 |
-
.stButton > button:hover {
|
668 |
-
transform: translateY(-2px);
|
669 |
-
box-shadow: 0 4px 8px rgba(0,0,0,0.2);
|
670 |
-
transition: all 0.3s ease;
|
671 |
-
}
|
672 |
-
|
673 |
-
.uploadedFile {
|
674 |
-
border: 2px dashed #007BFF;
|
675 |
-
border-radius: 10px;
|
676 |
-
padding: 20px;
|
677 |
-
text-align: center;
|
678 |
-
margin: 10px 0;
|
679 |
-
}
|
680 |
-
|
681 |
-
.stDataFrame {
|
682 |
-
border-radius: 10px;
|
683 |
-
overflow: hidden;
|
684 |
-
}
|
685 |
-
|
686 |
-
.stExpander {
|
687 |
-
border-radius: 10px;
|
688 |
-
border: 1px solid #e0e0e0;
|
689 |
-
}
|
690 |
-
|
691 |
-
.stSuccess, .stError, .stWarning, .stInfo {
|
692 |
-
border-radius: 10px;
|
693 |
-
padding: 15px;
|
694 |
-
margin: 10px 0;
|
695 |
-
}
|
696 |
-
|
697 |
-
.grade-card {
|
698 |
-
transition: transform 0.3s ease;
|
699 |
-
}
|
700 |
-
|
701 |
-
.grade-card:hover {
|
702 |
-
transform: scale(1.05);
|
703 |
-
}
|
704 |
-
|
705 |
-
/* Responsive design */
|
706 |
-
@media (max-width: 768px) {
|
707 |
-
.stColumns {
|
708 |
-
flex-direction: column;
|
709 |
-
}
|
710 |
-
|
711 |
-
.stButton > button {
|
712 |
-
height: 2.5em;
|
713 |
-
font-size: 14px;
|
714 |
-
}
|
715 |
-
}
|
716 |
-
|
717 |
-
/* Loading animation */
|
718 |
-
.stSpinner {
|
719 |
-
border-radius: 50%;
|
720 |
-
animation: spin 1s linear infinite;
|
721 |
-
}
|
722 |
-
|
723 |
-
@keyframes spin {
|
724 |
-
0% { transform: rotate(0deg); }
|
725 |
-
100% { transform: rotate(360deg); }
|
726 |
-
}
|
727 |
-
|
728 |
-
/* Custom scrollbar */
|
729 |
-
::-webkit-scrollbar {
|
730 |
-
width: 8px;
|
731 |
-
}
|
732 |
-
|
733 |
-
::-webkit-scrollbar-track {
|
734 |
-
background: #f1f1f1;
|
735 |
-
border-radius: 10px;
|
736 |
-
}
|
737 |
-
|
738 |
-
::-webkit-scrollbar-thumb {
|
739 |
-
background: #007BFF;
|
740 |
-
border-radius: 10px;
|
741 |
-
}
|
742 |
-
|
743 |
-
::-webkit-scrollbar-thumb:hover {
|
744 |
-
background: #0056b3;
|
745 |
-
}
|
746 |
-
</style>
|
747 |
-
""", unsafe_allow_html=True)
|
748 |
|
749 |
-
|
750 |
-
st.
|
751 |
-
|
752 |
-
|
753 |
-
|
754 |
-
|
755 |
-
|
756 |
-
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
}
|
761 |
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
new Notification(title, {
|
767 |
-
body: message,
|
768 |
-
icon: "🥗"
|
769 |
-
});
|
770 |
-
} else if (Notification.permission !== "denied") {
|
771 |
-
Notification.requestPermission().then(function (permission) {
|
772 |
-
if (permission === "granted") {
|
773 |
-
new Notification(title, {
|
774 |
-
body: message,
|
775 |
-
icon: "🥗"
|
776 |
-
});
|
777 |
-
}
|
778 |
-
});
|
779 |
-
}
|
780 |
-
}
|
781 |
-
}
|
782 |
|
783 |
-
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
|
788 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
789 |
|
790 |
-
|
|
|
|
|
|
|
|
|
|
|
791 |
st.markdown("---")
|
|
|
|
|
792 |
st.markdown("""
|
793 |
-
<div style="
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
</p>
|
799 |
-
<p style="color: #888; font-size: 12px; margin-top: 15px;">
|
800 |
-
© 2024 Tim Nutri-Grade | Semua hak dilindungi undang-undang<br>
|
801 |
-
<a href="https://huggingface.co/spaces/your-username/nutri-grade" target="_blank" style="color: #007BFF; text-decoration: none;">
|
802 |
-
🤗 Hugging Face Repository
|
803 |
-
</a> |
|
804 |
-
<a href="mailto:[email protected]" style="color: #007BFF; text-decoration: none;">
|
805 |
-
📧 Kontak
|
806 |
-
</a> |
|
807 |
-
<a href="#" style="color: #007BFF; text-decoration: none;">
|
808 |
-
📋 Terms of Service
|
809 |
-
</a>
|
810 |
-
</p>
|
811 |
</div>
|
812 |
-
""", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ==============================================================================
|
2 |
+
# 1. IMPORT LIBRARY
|
3 |
+
# ==============================================================================
|
4 |
import streamlit as st
|
5 |
import cv2
|
6 |
import numpy as np
|
7 |
import re
|
|
|
8 |
import pandas as pd
|
9 |
from PIL import Image
|
10 |
import time
|
|
|
|
|
11 |
from paddleocr import PaddleOCR, draw_ocr
|
12 |
+
import openai
|
13 |
|
14 |
+
# ==============================================================================
|
15 |
+
# 2. KONFIGURASI APLIKASI
|
16 |
+
# ==============================================================================
|
17 |
+
# Konfigurasi halaman Streamlit (sebaiknya dipanggil sekali di awal)
|
|
|
18 |
st.set_page_config(
|
19 |
+
page_title="Nutri-Grade Calculator",
|
20 |
+
page_icon="🍏",
|
21 |
+
layout="centered",
|
22 |
+
initial_sidebar_state="auto"
|
23 |
)
|
24 |
|
25 |
+
# --- Konfigurasi Kunci API dan Model ---
|
26 |
+
# Menggunakan st.secrets untuk keamanan, jangan hardcode kunci API!
|
27 |
+
# Buat file .streamlit/secrets.toml di repo Hugging Face Anda.
|
28 |
+
# Isinya:
|
29 |
+
OPENAI_API_KEY = "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"
|
30 |
+
try:
|
31 |
+
openai.api_key = st.secrets["OPENAI_API_KEY"]
|
32 |
+
except (KeyError, FileNotFoundError):
|
33 |
+
st.error("Kunci API OpenRouter tidak ditemukan. Harap atur di st.secrets.")
|
34 |
+
st.stop()
|
35 |
|
36 |
+
openai.api_base = "https://openrouter.ai/api/v1"
|
37 |
+
AI_MODEL_NAME = "qwen/qwen2.5-vl-72b-instruct:free"
|
38 |
+
|
39 |
+
# --- Variabel Global dan Konstanta ---
|
40 |
+
TARGET_KEYS = {
|
41 |
+
"gula": ["gula", "sugar"],
|
42 |
+
"takaran saji": ["takaran saji", "serving size"],
|
43 |
+
"lemak jenuh": ["lemak jenuh", "saturated fat"]
|
44 |
+
}
|
45 |
+
|
46 |
+
# ==============================================================================
|
47 |
+
# 3. FUNGSI-FUNGSI UTAMA
|
48 |
+
# ==============================================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
|
|
50 |
@st.cache_resource
|
51 |
+
def load_ocr_model():
|
52 |
+
"""
|
53 |
+
Memuat model PaddleOCR dan menyimpannya di cache.
|
54 |
+
Menggunakan CPU untuk kompatibilitas yang lebih baik di Hugging Face Spaces.
|
55 |
+
"""
|
56 |
+
print("Memuat model PaddleOCR...")
|
57 |
+
# PENTING: use_gpu=False untuk stabilitas di environment tanpa GPU yang terkonfigurasi.
|
58 |
+
# Ini adalah perbaikan utama untuk error 'Failed to parse program_desc'.
|
59 |
+
return PaddleOCR(use_gpu=False, lang='id', cls=True)
|
60 |
+
|
61 |
+
def parse_numeric_value(text: str) -> float:
|
62 |
+
"""
|
63 |
+
Membersihkan string dan mengubahnya menjadi float.
|
64 |
+
Contoh: "15g" -> 15.0 atau "Sekitar 12.5" -> 12.5
|
65 |
+
"""
|
66 |
+
if not isinstance(text, str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
return 0.0
|
68 |
+
# Mengambil semua digit, titik, dan tanda minus
|
69 |
+
cleaned = re.sub(r"[^\d\.\-]", "", text)
|
70 |
try:
|
71 |
return float(cleaned)
|
72 |
except (ValueError, TypeError):
|
73 |
return 0.0
|
74 |
|
75 |
+
def perform_ocr(image_path: str, ocr_model) -> list:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
"""
|
77 |
+
Melakukan OCR pada gambar dan mengembalikan hasil dalam format yang terstruktur.
|
78 |
+
"""
|
79 |
+
if not image_path:
|
80 |
+
return []
|
81 |
+
|
82 |
+
result = ocr_model.ocr(image_path, cls=True)
|
83 |
+
if not result or not result[0]:
|
84 |
+
return []
|
85 |
+
|
86 |
+
ocr_list = []
|
87 |
+
for line in result[0]:
|
88 |
+
box = line[0]
|
89 |
+
text, score = line[1]
|
90 |
+
xs = [pt[0] for pt in box]
|
91 |
+
ys = [pt[1] for pt in box]
|
92 |
+
ocr_list.append({
|
93 |
+
"text": text,
|
94 |
+
"box": box,
|
95 |
+
"score": score,
|
96 |
+
"center_x": sum(xs) / len(xs),
|
97 |
+
"center_y": sum(ys) / len(ys),
|
98 |
+
"height": max(ys) - min(ys)
|
99 |
+
})
|
100 |
+
# Urutkan berdasarkan posisi vertikal (atas ke bawah)
|
101 |
+
return sorted(ocr_list, key=lambda x: x["center_y"])
|
102 |
+
|
103 |
+
def extract_key_values(ocr_data: list, target_keys: dict) -> dict:
|
104 |
+
"""
|
105 |
+
Mengekstrak pasangan key-value dari data OCR yang telah diproses.
|
106 |
+
"""
|
107 |
+
extracted = {}
|
108 |
+
|
109 |
+
# Pass 1: Mencari key yang diikuti oleh titik dua (contoh: "Gula: 10g")
|
110 |
+
for item in ocr_data:
|
111 |
+
txt_lower = item["text"].lower()
|
112 |
+
if ":" in txt_lower:
|
113 |
+
parts = txt_lower.split(":", 1)
|
114 |
+
key_candidate, value_candidate = parts[0].strip(), parts[1].strip()
|
115 |
+
|
116 |
+
for canonical, variants in target_keys.items():
|
117 |
+
if canonical.capitalize() not in extracted:
|
118 |
+
for variant in variants:
|
119 |
+
if variant in key_candidate:
|
120 |
+
clean_value = re.sub(r"[^\d\.\-]", "", value_candidate)
|
121 |
+
if clean_value and clean_value != ".":
|
122 |
+
extracted[canonical.capitalize()] = clean_value
|
123 |
+
break
|
124 |
+
|
125 |
+
# Pass 2: Fallback, mencari nilai yang paling dekat di sebelah kanan key
|
126 |
+
for item in ocr_data:
|
127 |
+
txt_lower = item["text"].lower()
|
128 |
+
for canonical, variants in target_keys.items():
|
129 |
+
if canonical.capitalize() not in extracted:
|
130 |
+
for variant in variants:
|
131 |
+
if variant in txt_lower:
|
132 |
+
key_center_y, key_center_x, key_height = item["center_y"], item["center_x"], item["height"]
|
133 |
+
best_candidate = None
|
134 |
+
min_horizontal_dist = float('inf')
|
135 |
+
|
136 |
+
for other in ocr_data:
|
137 |
+
# Cari kandidat di sebelah kanan dan sejajar secara vertikal
|
138 |
+
is_aligned_y = abs(other["center_y"] - key_center_y) < key_height * 0.75
|
139 |
+
is_to_the_right = other["center_x"] > key_center_x
|
140 |
+
|
141 |
+
if item != other and is_aligned_y and is_to_the_right:
|
142 |
+
horizontal_dist = other["center_x"] - key_center_x
|
143 |
+
if horizontal_dist < min_horizontal_dist:
|
144 |
+
min_horizontal_dist = horizontal_dist
|
145 |
+
best_candidate = other
|
146 |
+
|
147 |
+
if best_candidate:
|
148 |
+
raw_value = best_candidate["text"]
|
149 |
+
clean_value = re.sub(r"[^\d\.\-]", "", raw_value)
|
150 |
+
if clean_value and clean_value != ".":
|
151 |
+
extracted[canonical.capitalize()] = clean_value
|
152 |
+
break # Pindah ke canonical key berikutnya
|
153 |
+
return extracted
|
154 |
+
|
155 |
+
def calculate_final_grade(sugar_norm: float, fat_norm: float) -> (str, str, str):
|
156 |
+
"""
|
157 |
+
Menghitung grade untuk gula, lemak jenuh, dan grade akhir.
|
158 |
+
"""
|
159 |
+
thresholds = {
|
160 |
+
"sugar": {"A": 1.0, "B": 5.0, "C": 10.0},
|
161 |
+
"fat": {"A": 0.7, "B": 1.2, "C": 2.8}
|
162 |
}
|
163 |
+
grade_scores = {"A": 1, "B": 2, "C": 3, "D": 4}
|
164 |
|
165 |
+
def get_grade(value, nutrient_type):
|
166 |
+
if value <= thresholds[nutrient_type]["A"]: return "A"
|
167 |
+
if value <= thresholds[nutrient_type]["B"]: return "B"
|
168 |
+
if value <= thresholds[nutrient_type]["C"]: return "C"
|
169 |
+
return "D"
|
170 |
+
|
171 |
+
sugar_grade = get_grade(sugar_norm, "sugar")
|
172 |
+
fat_grade = get_grade(fat_norm, "fat")
|
173 |
+
|
174 |
+
worst_score = max(grade_scores[sugar_grade], grade_scores[fat_grade])
|
175 |
+
final_grade = next(grade for grade, score in grade_scores.items() if score == worst_score)
|
176 |
|
177 |
+
return f"Grade {sugar_grade}", f"Grade {fat_grade}", f"Grade {final_grade}"
|
178 |
+
|
179 |
+
def generate_nutrition_advice(data: dict) -> str:
|
180 |
+
"""
|
181 |
+
Membuat prompt dan memanggil API LLM untuk mendapatkan saran nutrisi.
|
182 |
+
"""
|
183 |
+
nutrition_prompt = f"""
|
184 |
+
Anda adalah seorang ahli gizi dari Indonesia yang ramah, komunikatif, dan berpengalaman.
|
185 |
+
Berikut adalah data nutrisi sebuah produk makanan:
|
186 |
+
- Takaran Saji: {data['serving_size']:.2f} g/ml
|
187 |
+
- Kandungan Gula (setelah normalisasi per 100g): {data['sugar_norm']:.2f} g
|
188 |
+
- Kandungan Lemak Jenuh (setelah normalisasi per 100g): {data['fat_norm']:.2f} g
|
189 |
+
- Grade Gula: {data['sugar_grade']}
|
190 |
+
- Grade Lemak Jenuh: {data['fat_grade']}
|
191 |
+
- Grade Akhir Produk: {data['final_grade']}
|
192 |
+
|
193 |
+
Tugas Anda:
|
194 |
+
Berikan saran nutrisi yang informatif dalam satu paragraf pendek (sekitar 50-100 kata).
|
195 |
+
Gunakan bahasa yang bersahabat dan mudah dimengerti. Jelaskan secara ringkas arti dari data nutrisi di atas,
|
196 |
+
dampak kesehatan terkait, dan berikan tips praktis untuk menjaga pola makan seimbang.
|
197 |
+
"""
|
198 |
+
st.write("Tunggu sebentar, Qwen si AI nutritionist sedang memproses penjelasannya... 🤖")
|
199 |
try:
|
200 |
+
completion = openai.ChatCompletion.create(
|
201 |
+
model=AI_MODEL_NAME,
|
202 |
+
messages=[{"role": "user", "content": nutrition_prompt}]
|
|
|
|
|
203 |
)
|
204 |
+
return completion.choices[0].message.content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
except Exception as e:
|
206 |
+
return f"Gagal mendapatkan saran dari Qwen: {e}"
|
207 |
+
|
208 |
+
def display_colored_grade(grade_text: str):
|
209 |
+
"""
|
210 |
+
Menampilkan grade akhir dengan warna latar yang sesuai.
|
211 |
+
"""
|
212 |
+
color_map = {
|
213 |
+
"Grade A": "#2ecc71", # Hijau
|
214 |
+
"Grade B": "#f1c40f", # Kuning
|
215 |
+
"Grade C": "#e67e22", # Oranye
|
216 |
+
"Grade D": "#e74c3c" # Merah
|
217 |
+
}
|
218 |
+
bg_color = color_map.get(grade_text, "#7f8c8d") # Default abu-abu
|
219 |
+
|
220 |
+
html_code = f"""
|
221 |
+
<div style="
|
222 |
+
background-color: {bg_color};
|
223 |
+
padding: 15px;
|
224 |
+
border-radius: 8px;
|
225 |
+
margin-top: 10px;
|
226 |
+
font-weight: bold;
|
227 |
+
color: white;
|
228 |
+
text-align: center;
|
229 |
+
font-size: 20px;
|
230 |
+
">
|
231 |
+
{grade_text}
|
232 |
+
</div>
|
233 |
+
"""
|
234 |
+
st.markdown(html_code, unsafe_allow_html=True)
|
235 |
+
|
236 |
+
# ==============================================================================
|
237 |
+
# 4. TAMPILAN ANTARMUKA (USER INTERFACE)
|
238 |
+
# ==============================================================================
|
239 |
+
|
240 |
+
# --- Judul dan Deskripsi ---
|
241 |
+
st.title("🍏 Nutri-Grade Label & Grade Calculator")
|
242 |
+
st.caption("Aplikasi prototipe untuk menganalisis dan memberi grade pada label nutrisi produk, terinspirasi oleh Nutri-Grade Singapura. Refresh halaman jika terjadi masalah.")
|
243 |
+
|
244 |
+
# --- Petunjuk Penggunaan dan Info ---
|
245 |
+
with st.expander("Petunjuk Penggunaan 📝"):
|
246 |
+
st.markdown("""
|
247 |
+
1. **Upload Gambar**: Unggah gambar tabel gizi produk. Jika dari ponsel, Anda bisa langsung menggunakan kamera.
|
248 |
+
2. **Deteksi Teks (OCR)**: Sistem akan secara otomatis mendeteksi teks dan angka pada gambar.
|
249 |
+
3. **Koreksi Manual**: Periksa hasil deteksi. Jika ada yang kurang tepat, Anda bisa memperbaikinya di formulir.
|
250 |
+
4. **Hitung Grade**: Klik tombol "Hitung" untuk melihat hasil analisis, grade, dan saran nutrisi.
|
251 |
+
""")
|
252 |
+
|
253 |
+
with st.expander("⚠️ Harap Diperhatikan"):
|
254 |
+
st.markdown("""
|
255 |
+
- Aplikasi ini masih dalam tahap **pengembangan (prototipe)**.
|
256 |
+
- Hasil ekstraksi otomatis mungkin tidak 100% akurat. **Selalu verifikasi dengan label fisik**.
|
257 |
+
- Dijalankan pada server gratis, mohon maaf jika terkadang lambat atau mengalami kendala.
|
258 |
+
- Kode sumber tersedia di [Hugging Face](https://huggingface.co/spaces/tataaditya/nutri-grade). Kontribusi dan feedback sangat kami hargai.
|
259 |
+
- Referensi utama: [Health Promotion Board Singapore](https://www.hpb.gov.sg/docs/default-source/pdf/nutri-grade-ci-guide_eng-only67e4e36349ad4274bfdb22236872336d.pdf).
|
260 |
+
""")
|
261 |
+
|
262 |
+
# --- Inisialisasi Model OCR ---
|
263 |
+
ocr_model = load_ocr_model()
|
264 |
|
265 |
# --- STEP 1: Upload Gambar ---
|
|
|
266 |
uploaded_file = st.file_uploader(
|
267 |
+
"Upload gambar tabel gizi di sini (JPG/PNG)",
|
268 |
+
type=["jpg", "jpeg", "png"]
|
|
|
269 |
)
|
270 |
|
271 |
if uploaded_file is not None:
|
272 |
+
# Menggunakan session state untuk menyimpan hasil agar tidak perlu diulang
|
273 |
+
if 'last_uploaded_file' not in st.session_state or st.session_state.last_uploaded_file != uploaded_file.name:
|
274 |
+
st.session_state.last_uploaded_file = uploaded_file.name
|
275 |
+
st.session_state.ocr_data = None
|
276 |
+
st.session_state.extracted_data = {}
|
277 |
+
|
278 |
+
# Konversi dan tampilkan gambar
|
279 |
+
image_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
|
280 |
+
img = cv2.imdecode(image_bytes, 1)
|
281 |
+
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
282 |
+
st.image(img_rgb, caption="Gambar yang diunggah", use_column_width=True)
|
283 |
+
|
284 |
+
# Simpan gambar sementara untuk diproses OCR
|
285 |
+
img_path = "uploaded_image.jpg"
|
286 |
+
cv2.imwrite(img_path, img)
|
287 |
+
|
288 |
+
# --- STEP 2: Proses OCR (hanya jika belum ada datanya) ---
|
289 |
+
if st.session_state.ocr_data is None:
|
290 |
+
with st.spinner("Membaca teks dari gambar... Ini mungkin memakan waktu beberapa detik."):
|
291 |
+
start_time = time.time()
|
292 |
+
st.session_state.ocr_data = perform_ocr(img_path, ocr_model)
|
293 |
+
ocr_time = time.time() - start_time
|
294 |
|
295 |
+
if not st.session_state.ocr_data:
|
296 |
+
st.error("OCR tidak dapat menemukan teks apapun pada gambar. Coba gambar yang lebih jelas.")
|
297 |
st.stop()
|
298 |
+
else:
|
299 |
+
st.success(f"OCR berhasil! Ditemukan {len(st.session_state.ocr_data)} baris teks dalam {ocr_time:.2f} detik.")
|
300 |
+
st.session_state.extracted_data = extract_key_values(st.session_state.ocr_data, TARGET_KEYS)
|
301 |
+
|
302 |
+
# Tampilkan hasil OCR dengan bounding box untuk referensi
|
303 |
+
with st.expander("Lihat Hasil Deteksi Teks (OCR)"):
|
304 |
+
boxes_ocr = [line["box"] for line in st.session_state.ocr_data]
|
305 |
+
texts_ocr = [line["text"] for line in st.session_state.ocr_data]
|
306 |
+
scores_ocr = [line["score"] for line in st.session_state.ocr_data]
|
307 |
+
# Gunakan font default jika simfang tidak ada
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
try:
|
309 |
+
im_show = draw_ocr(Image.open(img_path).convert("RGB"), boxes_ocr, texts_ocr, scores_ocr, font_path="simfang.ttf")
|
|
|
310 |
except:
|
311 |
+
im_show = draw_ocr(Image.open(img_path).convert("RGB"), boxes_ocr, texts_ocr, scores_ocr)
|
312 |
+
im_show = Image.fromarray(im_show)
|
313 |
+
st.image(im_show, caption="Hasil OCR dengan Bounding Boxes", use_column_width=True)
|
|
|
314 |
|
315 |
+
# --- STEP 3: Koreksi Manual ---
|
316 |
+
st.markdown("---")
|
317 |
+
st.subheader("Verifikasi & Koreksi Data")
|
318 |
+
st.info("Periksa dan koreksi nilai yang diekstrak jika perlu. Masukkan **hanya angka** (gunakan titik untuk desimal).")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
|
320 |
+
with st.form("correction_form"):
|
321 |
+
corrected_data = {}
|
322 |
+
# Ambil nilai dari session state sebagai default
|
323 |
+
extracted_data = st.session_state.extracted_data
|
324 |
+
|
325 |
+
for key in TARGET_KEYS.keys():
|
326 |
+
key_cap = key.capitalize()
|
327 |
+
# Ambil nilai yang sudah diekstrak, jika tidak ada, biarkan kosong
|
328 |
+
default_val = extracted_data.get(key_cap, "")
|
329 |
+
corrected_data[key_cap] = st.text_input(
|
330 |
+
label=f"**{key_cap}** (angka saja)",
|
331 |
+
value=default_val
|
332 |
+
)
|
333 |
+
|
334 |
+
submit_button = st.form_submit_button("✅ Hitung Grade & Dapatkan Saran")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
|
336 |
+
# --- STEP 4: Kalkulasi dan Tampilan Hasil ---
|
337 |
+
if submit_button:
|
338 |
+
try:
|
339 |
+
# Ambil nilai dari form yang sudah dikoreksi
|
340 |
+
serving_size = parse_numeric_value(corrected_data.get("Takaran saji", "100"))
|
341 |
+
sugar_value = parse_numeric_value(corrected_data.get("Gula", "0"))
|
342 |
+
fat_value = parse_numeric_value(corrected_data.get("Lemak jenuh", "0"))
|
343 |
+
|
344 |
+
if serving_size <= 0:
|
345 |
+
st.error("Takaran Saji harus lebih besar dari nol untuk melakukan normalisasi.")
|
346 |
+
st.stop()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
|
348 |
+
# Normalisasi ke per 100g/ml
|
349 |
+
sugar_norm = (sugar_value / serving_size) * 100
|
350 |
+
fat_norm = (fat_value / serving_size) * 100
|
351 |
+
|
352 |
+
# Hitung Grade
|
353 |
+
sugar_grade, fat_grade, final_grade = calculate_final_grade(sugar_norm, fat_norm)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
354 |
|
355 |
+
st.markdown("---")
|
356 |
+
st.subheader("Hasil Analisis Nutrisi")
|
357 |
+
|
358 |
+
col1, col2 = st.columns(2)
|
359 |
+
with col1:
|
360 |
+
st.write("**Hasil Normalisasi per 100 g/ml**")
|
361 |
+
df_tabel = pd.DataFrame({
|
362 |
+
"Nutrisi": ["Gula Total", "Lemak Jenuh"],
|
363 |
+
"Nilai (per 100 g/ml)": [f"{sugar_norm:.2f} g", f"{fat_norm:.2f} g"]
|
364 |
+
})
|
365 |
+
st.table(df_tabel)
|
|
|
366 |
|
367 |
+
with col2:
|
368 |
+
st.write("**Hasil Penilaian Grade**")
|
369 |
+
st.metric(label="Grade Gula", value=sugar_grade)
|
370 |
+
st.metric(label="Grade Lemak Jenuh", value=fat_grade)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
371 |
|
372 |
+
st.write("**Grade Akhir Produk**")
|
373 |
+
display_colored_grade(final_grade)
|
374 |
+
|
375 |
+
st.markdown("---")
|
376 |
+
st.subheader("Saran dari Ahli Gizi AI")
|
377 |
+
|
378 |
+
advice_data = {
|
379 |
+
"serving_size": serving_size, "sugar_norm": sugar_norm, "fat_norm": fat_norm,
|
380 |
+
"sugar_grade": sugar_grade, "fat_grade": fat_grade, "final_grade": final_grade
|
381 |
+
}
|
382 |
+
nutrition_advice = generate_nutrition_advice(advice_data)
|
383 |
+
st.success(nutrition_advice)
|
384 |
|
385 |
+
except Exception as e:
|
386 |
+
st.error(f"Terjadi kesalahan saat perhitungan: {e}")
|
387 |
+
|
388 |
+
# ==============================================================================
|
389 |
+
# 5. FOOTER
|
390 |
+
# ==============================================================================
|
391 |
st.markdown("---")
|
392 |
+
|
393 |
+
# --- Tampilan Tim Pengembang ---
|
394 |
st.markdown("""
|
395 |
+
<div style="border: 1px solid #dfe6e9; padding: 15px; border-radius: 10px; margin-top: 20px; background-color: #fafafa;">
|
396 |
+
<h4 style="text-align: center; color: #007BFF;">Tim Pengembang</h4>
|
397 |
+
<p><strong>Nicholas Dominic</strong>, Mentor - <a href="https://www.linkedin.com/in/nicholas-dominic" target="_blank">LinkedIn</a></p>
|
398 |
+
<p><strong>Tata Aditya Pamungkas</strong>, Machine Learning - <a href="https://www.linkedin.com/in/tata-aditya-pamungkas" target="_blank">LinkedIn</a></p>
|
399 |
+
<p><strong>Raihan Hafiz</strong>, Web Dev - <a href="https://www.linkedin.com/in/m-raihan-hafiz-91a368186" target="_blank">LinkedIn</a></p>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
</div>
|
401 |
+
""", unsafe_allow_html=True)
|
402 |
+
|
403 |
+
with st.expander("Rencana Pengembangan & Inovasi Selanjutnya 🚀"):
|
404 |
+
st.markdown("""
|
405 |
+
1. **Infrastruktur yang Lebih Baik**: Migrasi ke server berbayar untuk meningkatkan kecepatan, stabilitas, dan kapasitas pengguna.
|
406 |
+
2. **Fitur Food Recall**: Mengembangkan fitur untuk mencatat asupan makanan harian (*real food*), bukan hanya produk kemasan. Ide ini divalidasi setelah diskusi dengan nutritionist [Firza Marhamah](https://www.linkedin.com/in/firza-marhamah).
|
407 |
+
3. **Kalkulator Kalori Harian**: Menambahkan fitur penghitung kebutuhan kalori harian yang dipersonalisasi berdasarkan data pengguna (usia, berat badan, tinggi badan, tingkat aktivitas).
|
408 |
+
""")
|