YourAIEngineer commited on
Commit
d5f12e1
·
verified ·
1 Parent(s): 648ea42

Delete Nutri-Label

Browse files
Nutri-Label/app.py DELETED
@@ -1,267 +0,0 @@
1
- import streamlit as st
2
- import cv2
3
- import numpy as np
4
- import re
5
- import os
6
- import pandas as pd
7
- from PIL import Image
8
- import time
9
- from ultralytics import YOLO
10
- from paddleocr import PaddleOCR, draw_ocr
11
-
12
- st.title("Nutri-Grade Label Detection & Grade Calculator")
13
-
14
- # -----------------------------------------------
15
- # Info & Petunjuk Penggunaan
16
- # -----------------------------------------------
17
- with st.expander("Info & Petunjuk Penggunaan"):
18
- st.markdown("""
19
- **Deskripsi Aplikasi:**
20
-
21
- Aplikasi ini membantu Anda mendeteksi dan mengekstrak informasi tabel gizi dari gambar label nutrisi, melakukan normalisasi nilai nutrisi per 100 g/ml, dan menghitung Nutri-Grade sesuai dengan standar resmi (Rev. Juni 2023).
22
-
23
- **Fitur Utama:**
24
- - Deteksi objek label nutrisi dengan YOLO.
25
- - Ekstraksi teks dengan PaddleOCR, mendukung format "key: value".
26
- - Normalisasi nilai nutrisi (Gula dan Lemak Jenuh) per 100 g/ml.
27
- - Perhitungan grade berdasarkan threshold:
28
- • Gula: Grade A ≤ 1g, B: >1-5g, C: >5-10g, D: >10g per 100 ml.
29
- • Lemak Jenuh: Grade A ≤ 0.7g, B: >0.7-1.2g, C: >1.2-2.8g, D: >2.8g per 100 ml.
30
- • **Grade akhir diambil dari nilai terburuk antara gula dan lemak jenuh.**
31
-
32
- **Cara Penggunaan:**
33
- 1. Upload gambar label nutrisi (JPG/PNG).
34
- 2. Sistem mendeteksi objek dan mengekstrak nilai nutrisi.
35
- 3. Periksa dan koreksi nilai secara manual jika diperlukan.
36
- 4. Klik *Hitung* untuk melihat tabel normalisasi dan grade.
37
- """)
38
-
39
- with st.expander("!! Tolong Diperhatikan !!"):
40
- st.markdown("""
41
- Labelisasi di bawah hanya sebagai gambaran umum. Perlu riset lebih lanjut untuk akurasi.
42
-
43
- **Pengembangan:**
44
- - Konsultasi dengan nutritionist untuk parameter yang lebih tepat.
45
- - Integrasi informasi halal, kalori, dan fitur interaktif (misal: chatbot).
46
- """)
47
-
48
- # Fungsi untuk membersihkan nilai numerik (contoh: "15g" → 15.0)
49
- def parse_numeric_value(text):
50
- cleaned = re.sub(r"[^\d\.\-]", "", text)
51
- try:
52
- return float(cleaned)
53
- except ValueError:
54
- return 0.0
55
-
56
- # Inisialisasi model YOLO dan PaddleOCR
57
- trained_model_path = "best.pt" # Pastikan file model YOLO ada di working directory
58
- yolo_model = YOLO(trained_model_path)
59
- ocr_model = PaddleOCR(use_gpu=True, lang='en', cls=True)
60
-
61
- # --- STEP 1: Upload Gambar ---
62
- uploaded_file = st.file_uploader("Upload Gambar (JPG/PNG)", type=["jpg", "jpeg", "png"])
63
- if uploaded_file is not None:
64
- file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
65
- img = cv2.imdecode(file_bytes, 1)
66
- st.image(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), caption="Gambar yang diupload", use_column_width=True)
67
- img_path = "uploaded_image.jpg"
68
- cv2.imwrite(img_path, img)
69
-
70
- # --- STEP 2: Object Detection & Crop dengan YOLO ---
71
- st.write("Melakukan object detection dengan YOLO dan crop region...")
72
- yolo_results = yolo_model.predict(source=img_path, conf=0.5)
73
- crop_images = []
74
- boxes = yolo_results[0].boxes
75
- for i, box in enumerate(boxes):
76
- x1, y1, x2, y2 = box.xyxy[0].cpu().numpy().astype(int)
77
- cropped = img[y1:y2, x1:x2]
78
- crop_filename = f"crop_{i}.jpg"
79
- cv2.imwrite(crop_filename, cropped)
80
- crop_images.append((crop_filename, cropped))
81
- st.success("Proses crop bounding box selesai!")
82
- st.write("Jumlah crop yang ditemukan:", len(crop_images))
83
- for crop_filename, cropped in crop_images:
84
- st.image(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB), caption=f"Crop: {crop_filename}", use_column_width=True)
85
-
86
- # --- STEP 3: OCR pada Gambar Penuh ---
87
- st.write("Melakukan OCR pada gambar penuh dengan PaddleOCR...")
88
- start_time = time.time()
89
- ocr_result = ocr_model.ocr(img_path, cls=True)
90
- ocr_time = time.time() - start_time
91
- st.write(f"Waktu pemrosesan OCR: {ocr_time:.2f} detik")
92
-
93
- if not ocr_result or len(ocr_result[0]) == 0:
94
- st.error("OCR tidak menemukan teks pada gambar!")
95
- else:
96
- # Ekstrak data OCR
97
- ocr_data = ocr_result[0]
98
- ocr_list = []
99
- for line in ocr_data:
100
- box = line[0]
101
- text = line[1][0]
102
- score = line[1][1]
103
- xs = [pt[0] for pt in box]
104
- ys = [pt[1] for pt in box]
105
- center_x = sum(xs) / len(xs)
106
- center_y = sum(ys) / len(ys)
107
- ocr_list.append({
108
- "text": text,
109
- "box": box,
110
- "score": score,
111
- "center_x": center_x,
112
- "center_y": center_y,
113
- "height": max(ys) - min(ys)
114
- })
115
- # Urutkan berdasarkan posisi vertikal
116
- ocr_list = sorted(ocr_list, key=lambda x: x["center_y"])
117
-
118
- # Ekstrak pasangan key-value dengan format "key: value"
119
- # Hanya ekstrak gula, takaran saji, dan lemak jenuh
120
- target_keys = {
121
- "gula": ["gula"],
122
- "takaran saji": ["takaran saji", "serving size"],
123
- "lemak jenuh": ["lemak jenuh"]
124
- }
125
- extracted = {}
126
- # Pass 1: Ekstraksi menggunakan tanda titik dua
127
- for item in ocr_list:
128
- txt_lower = item["text"].lower()
129
- if ":" in txt_lower:
130
- parts = txt_lower.split(":")
131
- key_candidate = parts[0].strip()
132
- value_candidate = parts[-1].strip()
133
- for canonical, variants in target_keys.items():
134
- for variant in variants:
135
- if variant in key_candidate and canonical not in extracted:
136
- clean_value = re.sub(r"[^\d\.\-]", "", value_candidate)
137
- if clean_value and clean_value != ".":
138
- extracted[canonical.capitalize()] = clean_value
139
- break
140
- # Pass 2: Fallback untuk key yang belum diekstrak
141
- for item in ocr_list:
142
- txt_lower = item["text"].lower()
143
- for canonical, variants in target_keys.items():
144
- if canonical not in extracted:
145
- for variant in variants:
146
- if variant in txt_lower:
147
- key_center = (item["center_x"], item["center_y"])
148
- key_height = item["height"]
149
- best_candidate = None
150
- min_dx = float('inf')
151
- for other in ocr_list:
152
- if other == item:
153
- continue
154
- if other["center_x"] > key_center[0] and abs(other["center_y"] - key_center[1]) < 0.5 * key_height:
155
- dx = other["center_x"] - key_center[0]
156
- if dx < min_dx:
157
- min_dx = dx
158
- best_candidate = other
159
- if best_candidate:
160
- raw_value = best_candidate["text"]
161
- clean_value = re.sub(r"[^\d\.\-]", "", raw_value)
162
- if clean_value and clean_value != ".":
163
- extracted[canonical.capitalize()] = clean_value
164
- break
165
-
166
- if extracted:
167
- st.write("**Hasil Ekstraksi Key-Value:**")
168
- for k, v in extracted.items():
169
- st.write(f"{k}: {v}")
170
- else:
171
- st.warning("Tidak ditemukan pasangan key-value yang cocok.")
172
-
173
- # Tampilkan hasil OCR dengan bounding box untuk referensi
174
- boxes_ocr = [line["box"] for line in ocr_list]
175
- texts_ocr = [line["text"] for line in ocr_list]
176
- scores_ocr = [line["score"] for line in ocr_list]
177
- im_show = draw_ocr(Image.open(img_path).convert("RGB"), boxes_ocr, texts_ocr, scores_ocr, font_path="simfang.ttf")
178
- im_show = Image.fromarray(im_show)
179
- st.image(im_show, caption="Hasil OCR dengan Bounding Boxes", use_column_width=True)
180
-
181
- # --- Koreksi Manual dengan st.form ---
182
- with st.form("correction_form"):
183
- st.write("Silakan koreksi nilai jika diperlukan (hanya angka, tanpa satuan):")
184
- corrected_data = {}
185
- for key in target_keys.keys():
186
- key_cap = key.capitalize()
187
- current_val = str(parse_numeric_value(extracted.get(key_cap, ""))) if key_cap in extracted else ""
188
- new_val = st.text_input(f"{key_cap}", value=current_val)
189
- corrected_data[key_cap] = new_val
190
- submit_button = st.form_submit_button("Hitung")
191
-
192
- if submit_button:
193
- try:
194
- serving_size = parse_numeric_value(corrected_data.get("Takaran saji", "100"))
195
- except:
196
- serving_size = 0.0
197
-
198
- # Ambil nilai nutrisi (hanya gula dan lemak jenuh)
199
- sugar_value = parse_numeric_value(corrected_data.get("Gula", "0"))
200
- fat_value = parse_numeric_value(corrected_data.get("Lemak jenuh", "0"))
201
-
202
- if serving_size > 0:
203
- sugar_norm = (sugar_value / serving_size) * 100
204
- fat_norm = (fat_value / serving_size) * 100
205
- else:
206
- st.error("Takaran saji tidak valid untuk normalisasi.")
207
- sugar_norm, fat_norm = sugar_value, fat_value
208
-
209
- st.write("**Tabel Hasil Normalisasi per 100 g/ml**")
210
- data_tabel = {
211
- "Nutrisi": ["Gula", "Lemak jenuh"],
212
- "Nilai (per 100 g/ml)": [sugar_norm, fat_norm]
213
- }
214
- df_tabel = pd.DataFrame(data_tabel)
215
- st.table(df_tabel)
216
-
217
- # Fungsi untuk menghitung grade berdasarkan threshold
218
- def grade_from_value(value, thresholds):
219
- if value <= thresholds["A"]:
220
- return "Grade A"
221
- elif value <= thresholds["B"]:
222
- return "Grade B"
223
- elif value <= thresholds["C"]:
224
- return "Grade C"
225
- else:
226
- return "Grade D"
227
-
228
- # Threshold sesuai panduan Nutri-Grade (g/100ml)
229
- thresholds_sugar = {"A": 1.0, "B": 5.0, "C": 10.0}
230
- thresholds_fat = {"A": 0.7, "B": 1.2, "C": 2.8}
231
-
232
- sugar_grade = grade_from_value(sugar_norm, thresholds_sugar)
233
- fat_grade = grade_from_value(fat_norm, thresholds_fat)
234
-
235
- # Grade akhir diambil dari nilai terburuk (nilai maksimum skor)
236
- grade_scores = {"Grade A": 1, "Grade B": 2, "Grade C": 3, "Grade D": 4}
237
- worst_score = max(grade_scores[sugar_grade], grade_scores[fat_grade])
238
- inverse_scores = {v: k for k, v in grade_scores.items()}
239
- final_grade = inverse_scores[worst_score]
240
-
241
- st.write(f"**Grade Gula:** {sugar_grade}")
242
- st.write(f"**Grade Lemak Jenuh:** {fat_grade}")
243
- st.write(f"**Grade Akhir:** {final_grade}")
244
-
245
- def color_grade(grade_text):
246
- if grade_text == "Grade A":
247
- bg_color = "#2ecc71"
248
- elif grade_text == "Grade B":
249
- bg_color = "#f1c40f"
250
- elif grade_text == "Grade C":
251
- bg_color = "#e67e22"
252
- else:
253
- bg_color = "#e74c3c"
254
- return f"""
255
- <div style="
256
- background-color: {bg_color};
257
- padding: 10px;
258
- border-radius: 5px;
259
- margin-top: 10px;
260
- font-weight: bold;
261
- color: white;
262
- text-align: center;
263
- ">
264
- {grade_text}
265
- </div>
266
- """
267
- st.markdown(color_grade(final_grade), unsafe_allow_html=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Nutri-Label/best.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:9ffd3c6552428cee4cd5895053bd1ea6b1f4e7815d46bd03807c243ac75d17ca
3
- size 6248483
 
 
 
 
Nutri-Label/requrements.txt DELETED
@@ -1,9 +0,0 @@
1
- --extra-index-url=https://www.paddlepaddle.org.cn/packages/stable/cpu/
2
- paddlepaddle==3.0.0rc1
3
- paddleocr
4
- ultralytics
5
- streamlit
6
- numpy
7
- opencv-python
8
- pandas
9
- Pillow
 
 
 
 
 
 
 
 
 
 
Nutri-Label/simfang.ttf DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:521c6f7546b4eb64fa4b0cd604bbd36333a20a57e388c8e2ad2ad07b9e593864
3
- size 10576012