Spaces:
Running
Running
Delete Nutri-Label
Browse files- Nutri-Label/app.py +0 -267
- Nutri-Label/best.pt +0 -3
- Nutri-Label/requrements.txt +0 -9
- Nutri-Label/simfang.ttf +0 -3
Nutri-Label/app.py
DELETED
@@ -1,267 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import cv2
|
3 |
-
import numpy as np
|
4 |
-
import re
|
5 |
-
import os
|
6 |
-
import pandas as pd
|
7 |
-
from PIL import Image
|
8 |
-
import time
|
9 |
-
from ultralytics import YOLO
|
10 |
-
from paddleocr import PaddleOCR, draw_ocr
|
11 |
-
|
12 |
-
st.title("Nutri-Grade Label Detection & Grade Calculator")
|
13 |
-
|
14 |
-
# -----------------------------------------------
|
15 |
-
# Info & Petunjuk Penggunaan
|
16 |
-
# -----------------------------------------------
|
17 |
-
with st.expander("Info & Petunjuk Penggunaan"):
|
18 |
-
st.markdown("""
|
19 |
-
**Deskripsi Aplikasi:**
|
20 |
-
|
21 |
-
Aplikasi ini membantu Anda mendeteksi dan mengekstrak informasi tabel gizi dari gambar label nutrisi, melakukan normalisasi nilai nutrisi per 100 g/ml, dan menghitung Nutri-Grade sesuai dengan standar resmi (Rev. Juni 2023).
|
22 |
-
|
23 |
-
**Fitur Utama:**
|
24 |
-
- Deteksi objek label nutrisi dengan YOLO.
|
25 |
-
- Ekstraksi teks dengan PaddleOCR, mendukung format "key: value".
|
26 |
-
- Normalisasi nilai nutrisi (Gula dan Lemak Jenuh) per 100 g/ml.
|
27 |
-
- Perhitungan grade berdasarkan threshold:
|
28 |
-
• Gula: Grade A ≤ 1g, B: >1-5g, C: >5-10g, D: >10g per 100 ml.
|
29 |
-
• Lemak Jenuh: Grade A ≤ 0.7g, B: >0.7-1.2g, C: >1.2-2.8g, D: >2.8g per 100 ml.
|
30 |
-
• **Grade akhir diambil dari nilai terburuk antara gula dan lemak jenuh.**
|
31 |
-
|
32 |
-
**Cara Penggunaan:**
|
33 |
-
1. Upload gambar label nutrisi (JPG/PNG).
|
34 |
-
2. Sistem mendeteksi objek dan mengekstrak nilai nutrisi.
|
35 |
-
3. Periksa dan koreksi nilai secara manual jika diperlukan.
|
36 |
-
4. Klik *Hitung* untuk melihat tabel normalisasi dan grade.
|
37 |
-
""")
|
38 |
-
|
39 |
-
with st.expander("!! Tolong Diperhatikan !!"):
|
40 |
-
st.markdown("""
|
41 |
-
Labelisasi di bawah hanya sebagai gambaran umum. Perlu riset lebih lanjut untuk akurasi.
|
42 |
-
|
43 |
-
**Pengembangan:**
|
44 |
-
- Konsultasi dengan nutritionist untuk parameter yang lebih tepat.
|
45 |
-
- Integrasi informasi halal, kalori, dan fitur interaktif (misal: chatbot).
|
46 |
-
""")
|
47 |
-
|
48 |
-
# Fungsi untuk membersihkan nilai numerik (contoh: "15g" → 15.0)
|
49 |
-
def parse_numeric_value(text):
|
50 |
-
cleaned = re.sub(r"[^\d\.\-]", "", text)
|
51 |
-
try:
|
52 |
-
return float(cleaned)
|
53 |
-
except ValueError:
|
54 |
-
return 0.0
|
55 |
-
|
56 |
-
# Inisialisasi model YOLO dan PaddleOCR
|
57 |
-
trained_model_path = "best.pt" # Pastikan file model YOLO ada di working directory
|
58 |
-
yolo_model = YOLO(trained_model_path)
|
59 |
-
ocr_model = PaddleOCR(use_gpu=True, lang='en', cls=True)
|
60 |
-
|
61 |
-
# --- STEP 1: Upload Gambar ---
|
62 |
-
uploaded_file = st.file_uploader("Upload Gambar (JPG/PNG)", type=["jpg", "jpeg", "png"])
|
63 |
-
if uploaded_file is not None:
|
64 |
-
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
|
65 |
-
img = cv2.imdecode(file_bytes, 1)
|
66 |
-
st.image(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), caption="Gambar yang diupload", use_column_width=True)
|
67 |
-
img_path = "uploaded_image.jpg"
|
68 |
-
cv2.imwrite(img_path, img)
|
69 |
-
|
70 |
-
# --- STEP 2: Object Detection & Crop dengan YOLO ---
|
71 |
-
st.write("Melakukan object detection dengan YOLO dan crop region...")
|
72 |
-
yolo_results = yolo_model.predict(source=img_path, conf=0.5)
|
73 |
-
crop_images = []
|
74 |
-
boxes = yolo_results[0].boxes
|
75 |
-
for i, box in enumerate(boxes):
|
76 |
-
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy().astype(int)
|
77 |
-
cropped = img[y1:y2, x1:x2]
|
78 |
-
crop_filename = f"crop_{i}.jpg"
|
79 |
-
cv2.imwrite(crop_filename, cropped)
|
80 |
-
crop_images.append((crop_filename, cropped))
|
81 |
-
st.success("Proses crop bounding box selesai!")
|
82 |
-
st.write("Jumlah crop yang ditemukan:", len(crop_images))
|
83 |
-
for crop_filename, cropped in crop_images:
|
84 |
-
st.image(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB), caption=f"Crop: {crop_filename}", use_column_width=True)
|
85 |
-
|
86 |
-
# --- STEP 3: OCR pada Gambar Penuh ---
|
87 |
-
st.write("Melakukan OCR pada gambar penuh dengan PaddleOCR...")
|
88 |
-
start_time = time.time()
|
89 |
-
ocr_result = ocr_model.ocr(img_path, cls=True)
|
90 |
-
ocr_time = time.time() - start_time
|
91 |
-
st.write(f"Waktu pemrosesan OCR: {ocr_time:.2f} detik")
|
92 |
-
|
93 |
-
if not ocr_result or len(ocr_result[0]) == 0:
|
94 |
-
st.error("OCR tidak menemukan teks pada gambar!")
|
95 |
-
else:
|
96 |
-
# Ekstrak data OCR
|
97 |
-
ocr_data = ocr_result[0]
|
98 |
-
ocr_list = []
|
99 |
-
for line in ocr_data:
|
100 |
-
box = line[0]
|
101 |
-
text = line[1][0]
|
102 |
-
score = line[1][1]
|
103 |
-
xs = [pt[0] for pt in box]
|
104 |
-
ys = [pt[1] for pt in box]
|
105 |
-
center_x = sum(xs) / len(xs)
|
106 |
-
center_y = sum(ys) / len(ys)
|
107 |
-
ocr_list.append({
|
108 |
-
"text": text,
|
109 |
-
"box": box,
|
110 |
-
"score": score,
|
111 |
-
"center_x": center_x,
|
112 |
-
"center_y": center_y,
|
113 |
-
"height": max(ys) - min(ys)
|
114 |
-
})
|
115 |
-
# Urutkan berdasarkan posisi vertikal
|
116 |
-
ocr_list = sorted(ocr_list, key=lambda x: x["center_y"])
|
117 |
-
|
118 |
-
# Ekstrak pasangan key-value dengan format "key: value"
|
119 |
-
# Hanya ekstrak gula, takaran saji, dan lemak jenuh
|
120 |
-
target_keys = {
|
121 |
-
"gula": ["gula"],
|
122 |
-
"takaran saji": ["takaran saji", "serving size"],
|
123 |
-
"lemak jenuh": ["lemak jenuh"]
|
124 |
-
}
|
125 |
-
extracted = {}
|
126 |
-
# Pass 1: Ekstraksi menggunakan tanda titik dua
|
127 |
-
for item in ocr_list:
|
128 |
-
txt_lower = item["text"].lower()
|
129 |
-
if ":" in txt_lower:
|
130 |
-
parts = txt_lower.split(":")
|
131 |
-
key_candidate = parts[0].strip()
|
132 |
-
value_candidate = parts[-1].strip()
|
133 |
-
for canonical, variants in target_keys.items():
|
134 |
-
for variant in variants:
|
135 |
-
if variant in key_candidate and canonical not in extracted:
|
136 |
-
clean_value = re.sub(r"[^\d\.\-]", "", value_candidate)
|
137 |
-
if clean_value and clean_value != ".":
|
138 |
-
extracted[canonical.capitalize()] = clean_value
|
139 |
-
break
|
140 |
-
# Pass 2: Fallback untuk key yang belum diekstrak
|
141 |
-
for item in ocr_list:
|
142 |
-
txt_lower = item["text"].lower()
|
143 |
-
for canonical, variants in target_keys.items():
|
144 |
-
if canonical not in extracted:
|
145 |
-
for variant in variants:
|
146 |
-
if variant in txt_lower:
|
147 |
-
key_center = (item["center_x"], item["center_y"])
|
148 |
-
key_height = item["height"]
|
149 |
-
best_candidate = None
|
150 |
-
min_dx = float('inf')
|
151 |
-
for other in ocr_list:
|
152 |
-
if other == item:
|
153 |
-
continue
|
154 |
-
if other["center_x"] > key_center[0] and abs(other["center_y"] - key_center[1]) < 0.5 * key_height:
|
155 |
-
dx = other["center_x"] - key_center[0]
|
156 |
-
if dx < min_dx:
|
157 |
-
min_dx = dx
|
158 |
-
best_candidate = other
|
159 |
-
if best_candidate:
|
160 |
-
raw_value = best_candidate["text"]
|
161 |
-
clean_value = re.sub(r"[^\d\.\-]", "", raw_value)
|
162 |
-
if clean_value and clean_value != ".":
|
163 |
-
extracted[canonical.capitalize()] = clean_value
|
164 |
-
break
|
165 |
-
|
166 |
-
if extracted:
|
167 |
-
st.write("**Hasil Ekstraksi Key-Value:**")
|
168 |
-
for k, v in extracted.items():
|
169 |
-
st.write(f"{k}: {v}")
|
170 |
-
else:
|
171 |
-
st.warning("Tidak ditemukan pasangan key-value yang cocok.")
|
172 |
-
|
173 |
-
# Tampilkan hasil OCR dengan bounding box untuk referensi
|
174 |
-
boxes_ocr = [line["box"] for line in ocr_list]
|
175 |
-
texts_ocr = [line["text"] for line in ocr_list]
|
176 |
-
scores_ocr = [line["score"] for line in ocr_list]
|
177 |
-
im_show = draw_ocr(Image.open(img_path).convert("RGB"), boxes_ocr, texts_ocr, scores_ocr, font_path="simfang.ttf")
|
178 |
-
im_show = Image.fromarray(im_show)
|
179 |
-
st.image(im_show, caption="Hasil OCR dengan Bounding Boxes", use_column_width=True)
|
180 |
-
|
181 |
-
# --- Koreksi Manual dengan st.form ---
|
182 |
-
with st.form("correction_form"):
|
183 |
-
st.write("Silakan koreksi nilai jika diperlukan (hanya angka, tanpa satuan):")
|
184 |
-
corrected_data = {}
|
185 |
-
for key in target_keys.keys():
|
186 |
-
key_cap = key.capitalize()
|
187 |
-
current_val = str(parse_numeric_value(extracted.get(key_cap, ""))) if key_cap in extracted else ""
|
188 |
-
new_val = st.text_input(f"{key_cap}", value=current_val)
|
189 |
-
corrected_data[key_cap] = new_val
|
190 |
-
submit_button = st.form_submit_button("Hitung")
|
191 |
-
|
192 |
-
if submit_button:
|
193 |
-
try:
|
194 |
-
serving_size = parse_numeric_value(corrected_data.get("Takaran saji", "100"))
|
195 |
-
except:
|
196 |
-
serving_size = 0.0
|
197 |
-
|
198 |
-
# Ambil nilai nutrisi (hanya gula dan lemak jenuh)
|
199 |
-
sugar_value = parse_numeric_value(corrected_data.get("Gula", "0"))
|
200 |
-
fat_value = parse_numeric_value(corrected_data.get("Lemak jenuh", "0"))
|
201 |
-
|
202 |
-
if serving_size > 0:
|
203 |
-
sugar_norm = (sugar_value / serving_size) * 100
|
204 |
-
fat_norm = (fat_value / serving_size) * 100
|
205 |
-
else:
|
206 |
-
st.error("Takaran saji tidak valid untuk normalisasi.")
|
207 |
-
sugar_norm, fat_norm = sugar_value, fat_value
|
208 |
-
|
209 |
-
st.write("**Tabel Hasil Normalisasi per 100 g/ml**")
|
210 |
-
data_tabel = {
|
211 |
-
"Nutrisi": ["Gula", "Lemak jenuh"],
|
212 |
-
"Nilai (per 100 g/ml)": [sugar_norm, fat_norm]
|
213 |
-
}
|
214 |
-
df_tabel = pd.DataFrame(data_tabel)
|
215 |
-
st.table(df_tabel)
|
216 |
-
|
217 |
-
# Fungsi untuk menghitung grade berdasarkan threshold
|
218 |
-
def grade_from_value(value, thresholds):
|
219 |
-
if value <= thresholds["A"]:
|
220 |
-
return "Grade A"
|
221 |
-
elif value <= thresholds["B"]:
|
222 |
-
return "Grade B"
|
223 |
-
elif value <= thresholds["C"]:
|
224 |
-
return "Grade C"
|
225 |
-
else:
|
226 |
-
return "Grade D"
|
227 |
-
|
228 |
-
# Threshold sesuai panduan Nutri-Grade (g/100ml)
|
229 |
-
thresholds_sugar = {"A": 1.0, "B": 5.0, "C": 10.0}
|
230 |
-
thresholds_fat = {"A": 0.7, "B": 1.2, "C": 2.8}
|
231 |
-
|
232 |
-
sugar_grade = grade_from_value(sugar_norm, thresholds_sugar)
|
233 |
-
fat_grade = grade_from_value(fat_norm, thresholds_fat)
|
234 |
-
|
235 |
-
# Grade akhir diambil dari nilai terburuk (nilai maksimum skor)
|
236 |
-
grade_scores = {"Grade A": 1, "Grade B": 2, "Grade C": 3, "Grade D": 4}
|
237 |
-
worst_score = max(grade_scores[sugar_grade], grade_scores[fat_grade])
|
238 |
-
inverse_scores = {v: k for k, v in grade_scores.items()}
|
239 |
-
final_grade = inverse_scores[worst_score]
|
240 |
-
|
241 |
-
st.write(f"**Grade Gula:** {sugar_grade}")
|
242 |
-
st.write(f"**Grade Lemak Jenuh:** {fat_grade}")
|
243 |
-
st.write(f"**Grade Akhir:** {final_grade}")
|
244 |
-
|
245 |
-
def color_grade(grade_text):
|
246 |
-
if grade_text == "Grade A":
|
247 |
-
bg_color = "#2ecc71"
|
248 |
-
elif grade_text == "Grade B":
|
249 |
-
bg_color = "#f1c40f"
|
250 |
-
elif grade_text == "Grade C":
|
251 |
-
bg_color = "#e67e22"
|
252 |
-
else:
|
253 |
-
bg_color = "#e74c3c"
|
254 |
-
return f"""
|
255 |
-
<div style="
|
256 |
-
background-color: {bg_color};
|
257 |
-
padding: 10px;
|
258 |
-
border-radius: 5px;
|
259 |
-
margin-top: 10px;
|
260 |
-
font-weight: bold;
|
261 |
-
color: white;
|
262 |
-
text-align: center;
|
263 |
-
">
|
264 |
-
{grade_text}
|
265 |
-
</div>
|
266 |
-
"""
|
267 |
-
st.markdown(color_grade(final_grade), unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Nutri-Label/best.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:9ffd3c6552428cee4cd5895053bd1ea6b1f4e7815d46bd03807c243ac75d17ca
|
3 |
-
size 6248483
|
|
|
|
|
|
|
|
Nutri-Label/requrements.txt
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
--extra-index-url=https://www.paddlepaddle.org.cn/packages/stable/cpu/
|
2 |
-
paddlepaddle==3.0.0rc1
|
3 |
-
paddleocr
|
4 |
-
ultralytics
|
5 |
-
streamlit
|
6 |
-
numpy
|
7 |
-
opencv-python
|
8 |
-
pandas
|
9 |
-
Pillow
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Nutri-Label/simfang.ttf
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:521c6f7546b4eb64fa4b0cd604bbd36333a20a57e388c8e2ad2ad07b9e593864
|
3 |
-
size 10576012
|
|
|
|
|
|
|
|