Spaces:
Runtime error
Runtime error
| # -*- coding: utf-8 -*- | |
| # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | |
| # holder of all proprietary rights on this computer program. | |
| # You can only use this computer program if you have closed | |
| # a license agreement with MPG or you get the right to use the computer | |
| # program from someone who is authorized to grant you that right. | |
| # Any use of the computer program without a valid license is prohibited and | |
| # liable to prosecution. | |
| # | |
| # Copyright©2019 Max-Planck-Gesellschaft zur Förderung | |
| # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | |
| # for Intelligent Systems. All rights reserved. | |
| # | |
| # Contact: [email protected] | |
| import numbers | |
| import numpy as np | |
| import torch | |
| from einops.einops import rearrange | |
| from torch.nn import functional as F | |
| """ | |
| Useful geometric operations, e.g. Perspective projection and a differentiable Rodrigues formula | |
| Parts of the code are taken from https://github.com/MandyMo/pytorch_HMR | |
| """ | |
| def quaternion_to_rotation_matrix(quat): | |
| """Convert quaternion coefficients to rotation matrix. | |
| Args: | |
| quat: size = [B, 4] 4 <===>(w, x, y, z) | |
| Returns: | |
| Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] | |
| """ | |
| norm_quat = quat | |
| norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True) | |
| w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3] | |
| B = quat.size(0) | |
| w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) | |
| wx, wy, wz = w * x, w * y, w * z | |
| xy, xz, yz = x * y, x * z, y * z | |
| rotMat = torch.stack([ | |
| w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy, w2 - x2 + y2 - z2, | |
| 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz, w2 - x2 - y2 + z2 | |
| ], | |
| dim=1).view(B, 3, 3) | |
| return rotMat | |
| def index(feat, uv): | |
| """ | |
| :param feat: [B, C, H, W] image features | |
| :param uv: [B, 2, N] uv coordinates in the image plane, range [0, 1] | |
| :return: [B, C, N] image features at the uv coordinates | |
| """ | |
| uv = uv.transpose(1, 2) # [B, N, 2] | |
| (B, N, _) = uv.shape | |
| C = feat.shape[1] | |
| if uv.shape[-1] == 3: | |
| # uv = uv[:,:,[2,1,0]] | |
| # uv = uv * torch.tensor([1.0,-1.0,1.0]).type_as(uv)[None,None,...] | |
| uv = uv.unsqueeze(2).unsqueeze(3) # [B, N, 1, 1, 3] | |
| else: | |
| uv = uv.unsqueeze(2) # [B, N, 1, 2] | |
| # NOTE: for newer PyTorch, it seems that training results are degraded due to implementation diff in F.grid_sample | |
| # for old versions, simply remove the aligned_corners argument. | |
| samples = torch.nn.functional.grid_sample(feat, uv, align_corners=True) # [B, C, N, 1] | |
| return samples.view(B, C, N) # [B, C, N] | |
| def orthogonal(points, calibrations, transforms=None): | |
| """ | |
| Compute the orthogonal projections of 3D points into the image plane by given projection matrix | |
| :param points: [B, 3, N] Tensor of 3D points | |
| :param calibrations: [B, 3, 4] Tensor of projection matrix | |
| :param transforms: [B, 2, 3] Tensor of image transform matrix | |
| :return: xyz: [B, 3, N] Tensor of xyz coordinates in the image plane | |
| """ | |
| rot = calibrations[:, :3, :3] | |
| trans = calibrations[:, :3, 3:4] | |
| pts = torch.baddbmm(trans, rot, points) # [B, 3, N] | |
| if transforms is not None: | |
| scale = transforms[:2, :2] | |
| shift = transforms[:2, 2:3] | |
| pts[:, :2, :] = torch.baddbmm(shift, scale, pts[:, :2, :]) | |
| return pts | |
| def perspective(points, calibrations, transforms=None): | |
| """ | |
| Compute the perspective projections of 3D points into the image plane by given projection matrix | |
| :param points: [Bx3xN] Tensor of 3D points | |
| :param calibrations: [Bx3x4] Tensor of projection matrix | |
| :param transforms: [Bx2x3] Tensor of image transform matrix | |
| :return: xy: [Bx2xN] Tensor of xy coordinates in the image plane | |
| """ | |
| rot = calibrations[:, :3, :3] | |
| trans = calibrations[:, :3, 3:4] | |
| homo = torch.baddbmm(trans, rot, points) # [B, 3, N] | |
| xy = homo[:, :2, :] / homo[:, 2:3, :] | |
| if transforms is not None: | |
| scale = transforms[:2, :2] | |
| shift = transforms[:2, 2:3] | |
| xy = torch.baddbmm(shift, scale, xy) | |
| xyz = torch.cat([xy, homo[:, 2:3, :]], 1) | |
| return xyz | |
| def batch_rodrigues(theta): | |
| """Convert axis-angle representation to rotation matrix. | |
| Args: | |
| theta: size = [B, 3] | |
| Returns: | |
| Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] | |
| """ | |
| l1norm = torch.norm(theta + 1e-8, p=2, dim=1) | |
| angle = torch.unsqueeze(l1norm, -1) | |
| normalized = torch.div(theta, angle) | |
| angle = angle * 0.5 | |
| v_cos = torch.cos(angle) | |
| v_sin = torch.sin(angle) | |
| quat = torch.cat([v_cos, v_sin * normalized], dim=1) | |
| return quat_to_rotmat(quat) | |
| def quat_to_rotmat(quat): | |
| """Convert quaternion coefficients to rotation matrix. | |
| Args: | |
| quat: size = [B, 4] 4 <===>(w, x, y, z) | |
| Returns: | |
| Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] | |
| """ | |
| norm_quat = quat | |
| norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True) | |
| w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3] | |
| B = quat.size(0) | |
| w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) | |
| wx, wy, wz = w * x, w * y, w * z | |
| xy, xz, yz = x * y, x * z, y * z | |
| rotMat = torch.stack( | |
| [ | |
| w2 + x2 - y2 - z2, | |
| 2 * xy - 2 * wz, | |
| 2 * wy + 2 * xz, | |
| 2 * wz + 2 * xy, | |
| w2 - x2 + y2 - z2, | |
| 2 * yz - 2 * wx, | |
| 2 * xz - 2 * wy, | |
| 2 * wx + 2 * yz, | |
| w2 - x2 - y2 + z2, | |
| ], | |
| dim=1, | |
| ).view(B, 3, 3) | |
| return rotMat | |
| def rotation_matrix_to_angle_axis(rotation_matrix): | |
| """ | |
| This function is borrowed from https://github.com/kornia/kornia | |
| Convert 3x4 rotation matrix to Rodrigues vector | |
| Args: | |
| rotation_matrix (Tensor): rotation matrix. | |
| Returns: | |
| Tensor: Rodrigues vector transformation. | |
| Shape: | |
| - Input: :math:`(N, 3, 4)` | |
| - Output: :math:`(N, 3)` | |
| Example: | |
| >>> input = torch.rand(2, 3, 4) # Nx4x4 | |
| >>> output = tgm.rotation_matrix_to_angle_axis(input) # Nx3 | |
| """ | |
| if rotation_matrix.shape[1:] == (3, 3): | |
| rot_mat = rotation_matrix.reshape(-1, 3, 3) | |
| hom = torch.tensor([0, 0, 1], dtype=torch.float32, device=rotation_matrix.device).reshape( | |
| 1, 3, 1 | |
| ).expand(rot_mat.shape[0], -1, -1) | |
| rotation_matrix = torch.cat([rot_mat, hom], dim=-1) | |
| quaternion = rotation_matrix_to_quaternion(rotation_matrix) | |
| aa = quaternion_to_angle_axis(quaternion) | |
| aa[torch.isnan(aa)] = 0.0 | |
| return aa | |
| def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor: | |
| """ | |
| This function is borrowed from https://github.com/kornia/kornia | |
| Convert quaternion vector to angle axis of rotation. | |
| Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h | |
| Args: | |
| quaternion (torch.Tensor): tensor with quaternions. | |
| Return: | |
| torch.Tensor: tensor with angle axis of rotation. | |
| Shape: | |
| - Input: :math:`(*, 4)` where `*` means, any number of dimensions | |
| - Output: :math:`(*, 3)` | |
| Example: | |
| >>> quaternion = torch.rand(2, 4) # Nx4 | |
| >>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3 | |
| """ | |
| if not torch.is_tensor(quaternion): | |
| raise TypeError("Input type is not a torch.Tensor. Got {}".format(type(quaternion))) | |
| if not quaternion.shape[-1] == 4: | |
| raise ValueError( | |
| "Input must be a tensor of shape Nx4 or 4. Got {}".format(quaternion.shape) | |
| ) | |
| # unpack input and compute conversion | |
| q1: torch.Tensor = quaternion[..., 1] | |
| q2: torch.Tensor = quaternion[..., 2] | |
| q3: torch.Tensor = quaternion[..., 3] | |
| sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3 | |
| sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta) | |
| cos_theta: torch.Tensor = quaternion[..., 0] | |
| two_theta: torch.Tensor = 2.0 * torch.where( | |
| cos_theta < 0.0, | |
| torch.atan2(-sin_theta, -cos_theta), | |
| torch.atan2(sin_theta, cos_theta), | |
| ) | |
| k_pos: torch.Tensor = two_theta / sin_theta | |
| k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta) | |
| k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg) | |
| angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3] | |
| angle_axis[..., 0] += q1 * k | |
| angle_axis[..., 1] += q2 * k | |
| angle_axis[..., 2] += q3 * k | |
| return angle_axis | |
| def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6): | |
| """ | |
| This function is borrowed from https://github.com/kornia/kornia | |
| Convert 3x4 rotation matrix to 4d quaternion vector | |
| This algorithm is based on algorithm described in | |
| https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201 | |
| Args: | |
| rotation_matrix (Tensor): the rotation matrix to convert. | |
| Return: | |
| Tensor: the rotation in quaternion | |
| Shape: | |
| - Input: :math:`(N, 3, 4)` | |
| - Output: :math:`(N, 4)` | |
| Example: | |
| >>> input = torch.rand(4, 3, 4) # Nx3x4 | |
| >>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4 | |
| """ | |
| if not torch.is_tensor(rotation_matrix): | |
| raise TypeError("Input type is not a torch.Tensor. Got {}".format(type(rotation_matrix))) | |
| if len(rotation_matrix.shape) > 3: | |
| raise ValueError( | |
| "Input size must be a three dimensional tensor. Got {}".format(rotation_matrix.shape) | |
| ) | |
| if not rotation_matrix.shape[-2:] == (3, 4): | |
| raise ValueError( | |
| "Input size must be a N x 3 x 4 tensor. Got {}".format(rotation_matrix.shape) | |
| ) | |
| rmat_t = torch.transpose(rotation_matrix, 1, 2) | |
| mask_d2 = rmat_t[:, 2, 2] < eps | |
| mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1] | |
| mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1] | |
| t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2] | |
| q0 = torch.stack( | |
| [ | |
| rmat_t[:, 1, 2] - rmat_t[:, 2, 1], | |
| t0, | |
| rmat_t[:, 0, 1] + rmat_t[:, 1, 0], | |
| rmat_t[:, 2, 0] + rmat_t[:, 0, 2], | |
| ], | |
| -1, | |
| ) | |
| t0_rep = t0.repeat(4, 1).t() | |
| t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2] | |
| q1 = torch.stack( | |
| [ | |
| rmat_t[:, 2, 0] - rmat_t[:, 0, 2], | |
| rmat_t[:, 0, 1] + rmat_t[:, 1, 0], | |
| t1, | |
| rmat_t[:, 1, 2] + rmat_t[:, 2, 1], | |
| ], | |
| -1, | |
| ) | |
| t1_rep = t1.repeat(4, 1).t() | |
| t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2] | |
| q2 = torch.stack( | |
| [ | |
| rmat_t[:, 0, 1] - rmat_t[:, 1, 0], | |
| rmat_t[:, 2, 0] + rmat_t[:, 0, 2], | |
| rmat_t[:, 1, 2] + rmat_t[:, 2, 1], | |
| t2, | |
| ], | |
| -1, | |
| ) | |
| t2_rep = t2.repeat(4, 1).t() | |
| t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2] | |
| q3 = torch.stack( | |
| [ | |
| t3, | |
| rmat_t[:, 1, 2] - rmat_t[:, 2, 1], | |
| rmat_t[:, 2, 0] - rmat_t[:, 0, 2], | |
| rmat_t[:, 0, 1] - rmat_t[:, 1, 0], | |
| ], | |
| -1, | |
| ) | |
| t3_rep = t3.repeat(4, 1).t() | |
| mask_c0 = mask_d2 * mask_d0_d1 | |
| mask_c1 = mask_d2 * ~mask_d0_d1 | |
| mask_c2 = ~mask_d2 * mask_d0_nd1 | |
| mask_c3 = ~mask_d2 * ~mask_d0_nd1 | |
| mask_c0 = mask_c0.view(-1, 1).type_as(q0) | |
| mask_c1 = mask_c1.view(-1, 1).type_as(q1) | |
| mask_c2 = mask_c2.view(-1, 1).type_as(q2) | |
| mask_c3 = mask_c3.view(-1, 1).type_as(q3) | |
| q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3 | |
| q /= torch.sqrt( | |
| t0_rep * mask_c0 + t1_rep * mask_c1 + t2_rep * mask_c2 # noqa | |
| + t3_rep * mask_c3 | |
| ) # noqa | |
| q *= 0.5 | |
| return q | |
| def rot6d_to_rotmat(x): | |
| """Convert 6D rotation representation to 3x3 rotation matrix. | |
| Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019 | |
| Input: | |
| (B,6) Batch of 6-D rotation representations | |
| Output: | |
| (B,3,3) Batch of corresponding rotation matrices | |
| """ | |
| if x.shape[-1] == 6: | |
| batch_size = x.shape[0] | |
| if len(x.shape) == 3: | |
| num = x.shape[1] | |
| x = rearrange(x, 'b n d -> (b n) d', d=6) | |
| else: | |
| num = 1 | |
| x = rearrange(x, 'b (k l) -> b k l', k=3, l=2) | |
| # x = x.view(-1,3,2) | |
| a1 = x[:, :, 0] | |
| a2 = x[:, :, 1] | |
| b1 = F.normalize(a1) | |
| b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1) | |
| b3 = torch.cross(b1, b2, dim=-1) | |
| mat = torch.stack((b1, b2, b3), dim=-1) | |
| if num > 1: | |
| mat = rearrange(mat, '(b n) h w-> b n h w', b=batch_size, n=num, h=3, w=3) | |
| else: | |
| x = x.view(-1, 3, 2) | |
| a1 = x[:, :, 0] | |
| a2 = x[:, :, 1] | |
| b1 = F.normalize(a1) | |
| b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1) | |
| b3 = torch.cross(b1, b2, dim=-1) | |
| mat = torch.stack((b1, b2, b3), dim=-1) | |
| return mat | |
| def rotmat_to_rot6d(x): | |
| """Convert 3x3 rotation matrix to 6D rotation representation. | |
| Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019 | |
| Input: | |
| (B,3,3) Batch of corresponding rotation matrices | |
| Output: | |
| (B,6) Batch of 6-D rotation representations | |
| """ | |
| batch_size = x.shape[0] | |
| x = x[:, :, :2] | |
| x = x.reshape(batch_size, 6) | |
| return x | |
| def rotmat_to_angle(x): | |
| """Convert rotation to one-D angle. | |
| Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019 | |
| Input: | |
| (B,2) Batch of corresponding rotation | |
| Output: | |
| (B,1) Batch of 1-D angle | |
| """ | |
| a = F.normalize(x) | |
| angle = torch.atan2(a[:, 0], a[:, 1]).unsqueeze(-1) | |
| return angle | |
| def projection(pred_joints, pred_camera, retain_z=False): | |
| pred_cam_t = torch.stack( | |
| [ | |
| pred_camera[:, 1], | |
| pred_camera[:, 2], | |
| 2 * 5000.0 / (224.0 * pred_camera[:, 0] + 1e-9), | |
| ], | |
| dim=-1, | |
| ) | |
| batch_size = pred_joints.shape[0] | |
| camera_center = torch.zeros(batch_size, 2) | |
| pred_keypoints_2d = perspective_projection( | |
| pred_joints, | |
| rotation=torch.eye(3).unsqueeze(0).expand(batch_size, -1, -1).to(pred_joints.device), | |
| translation=pred_cam_t, | |
| focal_length=5000.0, | |
| camera_center=camera_center, | |
| retain_z=retain_z, | |
| ) | |
| # Normalize keypoints to [-1,1] | |
| pred_keypoints_2d = pred_keypoints_2d / (224.0 / 2.0) | |
| return pred_keypoints_2d | |
| def perspective_projection( | |
| points, rotation, translation, focal_length, camera_center, retain_z=False | |
| ): | |
| """ | |
| This function computes the perspective projection of a set of points. | |
| Input: | |
| points (bs, N, 3): 3D points | |
| rotation (bs, 3, 3): Camera rotation | |
| translation (bs, 3): Camera translation | |
| focal_length (bs,) or scalar: Focal length | |
| camera_center (bs, 2): Camera center | |
| """ | |
| batch_size = points.shape[0] | |
| K = torch.zeros([batch_size, 3, 3], device=points.device) | |
| K[:, 0, 0] = focal_length | |
| K[:, 1, 1] = focal_length | |
| K[:, 2, 2] = 1.0 | |
| K[:, :-1, -1] = camera_center | |
| # Transform points | |
| points = torch.einsum("bij,bkj->bki", rotation, points) | |
| points = points + translation.unsqueeze(1) | |
| # Apply perspective distortion | |
| projected_points = points / points[:, :, -1].unsqueeze(-1) | |
| # Apply camera intrinsics | |
| projected_points = torch.einsum("bij,bkj->bki", K, projected_points) | |
| if retain_z: | |
| return projected_points | |
| else: | |
| return projected_points[:, :, :-1] | |
| def estimate_translation_np(S, joints_2d, joints_conf, focal_length=5000, img_size=(224., 224.)): | |
| """Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d. | |
| Input: | |
| S: (25, 3) 3D joint locations | |
| joints: (25, 3) 2D joint locations and confidence | |
| Returns: | |
| (3,) camera translation vector | |
| """ | |
| num_joints = S.shape[0] | |
| # focal length | |
| f = np.array([focal_length, focal_length]) | |
| # optical center | |
| center = np.array([img_size[1] / 2., img_size[0] / 2.]) | |
| # transformations | |
| Z = np.reshape(np.tile(S[:, 2], (2, 1)).T, -1) | |
| XY = np.reshape(S[:, 0:2], -1) | |
| O = np.tile(center, num_joints) | |
| F = np.tile(f, num_joints) | |
| weight2 = np.reshape(np.tile(np.sqrt(joints_conf), (2, 1)).T, -1) | |
| # least squares | |
| Q = np.array([ | |
| F * np.tile(np.array([1, 0]), num_joints), F * np.tile(np.array([0, 1]), num_joints), | |
| O - np.reshape(joints_2d, -1) | |
| ]).T | |
| c = (np.reshape(joints_2d, -1) - O) * Z - F * XY | |
| # weighted least squares | |
| W = np.diagflat(weight2) | |
| Q = np.dot(W, Q) | |
| c = np.dot(W, c) | |
| # square matrix | |
| A = np.dot(Q.T, Q) | |
| b = np.dot(Q.T, c) | |
| # solution | |
| trans = np.linalg.solve(A, b) | |
| return trans | |
| def estimate_translation(S, joints_2d, focal_length=5000., img_size=224., use_all_kps=False): | |
| """Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d. | |
| Input: | |
| S: (B, 49, 3) 3D joint locations | |
| joints: (B, 49, 3) 2D joint locations and confidence | |
| Returns: | |
| (B, 3) camera translation vectors | |
| """ | |
| if isinstance(focal_length, numbers.Number): | |
| focal_length = [ | |
| focal_length, | |
| ] * S.shape[0] | |
| # print(len(focal_length), focal_length) | |
| if isinstance(img_size, numbers.Number): | |
| img_size = [ | |
| (img_size, img_size), | |
| ] * S.shape[0] | |
| # print(len(img_size), img_size) | |
| device = S.device | |
| if use_all_kps: | |
| S = S.cpu().numpy() | |
| joints_2d = joints_2d.cpu().numpy() | |
| else: | |
| # Use only joints 25:49 (GT joints) | |
| S = S[:, 25:, :].cpu().numpy() | |
| joints_2d = joints_2d[:, 25:, :].cpu().numpy() | |
| joints_conf = joints_2d[:, :, -1] | |
| joints_2d = joints_2d[:, :, :-1] | |
| trans = np.zeros((S.shape[0], 3), dtype=np.float32) | |
| # Find the translation for each example in the batch | |
| for i in range(S.shape[0]): | |
| S_i = S[i] | |
| joints_i = joints_2d[i] | |
| conf_i = joints_conf[i] | |
| trans[i] = estimate_translation_np( | |
| S_i, joints_i, conf_i, focal_length=focal_length[i], img_size=img_size[i] | |
| ) | |
| return torch.from_numpy(trans).to(device) | |
| def Rot_y(angle, category="torch", prepend_dim=True, device=None): | |
| """Rotate around y-axis by angle | |
| Args: | |
| category: 'torch' or 'numpy' | |
| prepend_dim: prepend an extra dimension | |
| Return: Rotation matrix with shape [1, 3, 3] (prepend_dim=True) | |
| """ | |
| m = np.array([ | |
| [np.cos(angle), 0.0, np.sin(angle)], | |
| [0.0, 1.0, 0.0], | |
| [-np.sin(angle), 0.0, np.cos(angle)], | |
| ]) | |
| if category == "torch": | |
| if prepend_dim: | |
| return torch.tensor(m, dtype=torch.float, device=device).unsqueeze(0) | |
| else: | |
| return torch.tensor(m, dtype=torch.float, device=device) | |
| elif category == "numpy": | |
| if prepend_dim: | |
| return np.expand_dims(m, 0) | |
| else: | |
| return m | |
| else: | |
| raise ValueError("category must be 'torch' or 'numpy'") | |
| def Rot_x(angle, category="torch", prepend_dim=True, device=None): | |
| """Rotate around x-axis by angle | |
| Args: | |
| category: 'torch' or 'numpy' | |
| prepend_dim: prepend an extra dimension | |
| Return: Rotation matrix with shape [1, 3, 3] (prepend_dim=True) | |
| """ | |
| m = np.array([ | |
| [1.0, 0.0, 0.0], | |
| [0.0, np.cos(angle), -np.sin(angle)], | |
| [0.0, np.sin(angle), np.cos(angle)], | |
| ]) | |
| if category == "torch": | |
| if prepend_dim: | |
| return torch.tensor(m, dtype=torch.float, device=device).unsqueeze(0) | |
| else: | |
| return torch.tensor(m, dtype=torch.float, device=device) | |
| elif category == "numpy": | |
| if prepend_dim: | |
| return np.expand_dims(m, 0) | |
| else: | |
| return m | |
| else: | |
| raise ValueError("category must be 'torch' or 'numpy'") | |
| def Rot_z(angle, category="torch", prepend_dim=True, device=None): | |
| """Rotate around z-axis by angle | |
| Args: | |
| category: 'torch' or 'numpy' | |
| prepend_dim: prepend an extra dimension | |
| Return: Rotation matrix with shape [1, 3, 3] (prepend_dim=True) | |
| """ | |
| m = np.array([ | |
| [np.cos(angle), -np.sin(angle), 0.0], | |
| [np.sin(angle), np.cos(angle), 0.0], | |
| [0.0, 0.0, 1.0], | |
| ]) | |
| if category == "torch": | |
| if prepend_dim: | |
| return torch.tensor(m, dtype=torch.float, device=device).unsqueeze(0) | |
| else: | |
| return torch.tensor(m, dtype=torch.float, device=device) | |
| elif category == "numpy": | |
| if prepend_dim: | |
| return np.expand_dims(m, 0) | |
| else: | |
| return m | |
| else: | |
| raise ValueError("category must be 'torch' or 'numpy'") | |
| def compute_twist_rotation(rotation_matrix, twist_axis): | |
| ''' | |
| Compute the twist component of given rotation and twist axis | |
| https://stackoverflow.com/questions/3684269/component-of-a-quaternion-rotation-around-an-axis | |
| Parameters | |
| ---------- | |
| rotation_matrix : Tensor (B, 3, 3,) | |
| The rotation to convert | |
| twist_axis : Tensor (B, 3,) | |
| The twist axis | |
| Returns | |
| ------- | |
| Tensor (B, 3, 3) | |
| The twist rotation | |
| ''' | |
| quaternion = rotation_matrix_to_quaternion(rotation_matrix) | |
| twist_axis = twist_axis / (torch.norm(twist_axis, dim=1, keepdim=True) + 1e-9) | |
| projection = torch.einsum('bi,bi->b', twist_axis, quaternion[:, 1:]).unsqueeze(-1) * twist_axis | |
| twist_quaternion = torch.cat([quaternion[:, 0:1], projection], dim=1) | |
| twist_quaternion = twist_quaternion / (torch.norm(twist_quaternion, dim=1, keepdim=True) + 1e-9) | |
| twist_rotation = quaternion_to_rotation_matrix(twist_quaternion) | |
| twist_aa = quaternion_to_angle_axis(twist_quaternion) | |
| twist_angle = torch.sum(twist_aa, dim=1, | |
| keepdim=True) / torch.sum(twist_axis, dim=1, keepdim=True) | |
| return twist_rotation, twist_angle | |