Spaces:
Runtime error
Runtime error
| import cv2 | |
| import torch | |
| import numpy as np | |
| import imageio | |
| def aug_matrix(w1, h1, w2, h2): | |
| dx = (w2 - w1) / 2.0 | |
| dy = (h2 - h1) / 2.0 | |
| matrix_trans = np.array([[1.0, 0, dx], | |
| [0, 1.0, dy], | |
| [0, 0, 1.0]]) | |
| scale = np.min([float(w2)/w1, float(h2)/h1]) | |
| M = get_affine_matrix( | |
| center=(w2 / 2.0, h2 / 2.0), | |
| translate=(0, 0), | |
| scale=scale) | |
| M = np.array(M + [0., 0., 1.]).reshape(3, 3) | |
| M = M.dot(matrix_trans) | |
| return M | |
| def get_affine_matrix(center, translate, scale): | |
| cx, cy = center | |
| tx, ty = translate | |
| M = [1, 0, 0, | |
| 0, 1, 0] | |
| M = [x * scale for x in M] | |
| # Apply translation and of center translation: RSS * C^-1 | |
| M[2] += M[0] * (-cx) + M[1] * (-cy) | |
| M[5] += M[3] * (-cx) + M[4] * (-cy) | |
| # Apply center translation: T * C * RSS * C^-1 | |
| M[2] += cx + tx | |
| M[5] += cy + ty | |
| return M | |
| class BaseStreamer(): | |
| """This streamer will return images at 512x512 size. | |
| """ | |
| def __init__(self, | |
| width=512, height=512, pad=True, | |
| mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), | |
| **kwargs): | |
| self.width = width | |
| self.height = height | |
| self.pad = pad | |
| self.mean = np.array(mean) | |
| self.std = np.array(std) | |
| self.loader = self.create_loader() | |
| def create_loader(self): | |
| raise NotImplementedError | |
| yield np.zeros((600, 400, 3)) # in RGB (0, 255) | |
| def __getitem__(self, index): | |
| image = next(self.loader) | |
| in_height, in_width, _ = image.shape | |
| M = aug_matrix(in_width, in_height, self.width, self.height, self.pad) | |
| image = cv2.warpAffine( | |
| image, M[0:2, :], (self.width, self.height), flags=cv2.INTER_CUBIC) | |
| input = np.float32(image) | |
| input = (input / 255.0 - self.mean) / self.std # TO [-1.0, 1.0] | |
| input = input.transpose(2, 0, 1) # TO [3 x H x W] | |
| return torch.from_numpy(input).float() | |
| def __len__(self): | |
| raise NotImplementedError | |
| class CaptureStreamer(BaseStreamer): | |
| """This streamer takes webcam as input. | |
| """ | |
| def __init__(self, id=0, width=512, height=512, pad=True, **kwargs): | |
| super().__init__(width, height, pad, **kwargs) | |
| self.capture = cv2.VideoCapture(id) | |
| def create_loader(self): | |
| while True: | |
| _, image = self.capture.read() | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # RGB | |
| yield image | |
| def __len__(self): | |
| return 100_000_000 | |
| def __del__(self): | |
| self.capture.release() | |
| class VideoListStreamer(BaseStreamer): | |
| """This streamer takes a list of video files as input. | |
| """ | |
| def __init__(self, files, width=512, height=512, pad=True, **kwargs): | |
| super().__init__(width, height, pad, **kwargs) | |
| self.files = files | |
| self.captures = [imageio.get_reader(f) for f in files] | |
| self.nframes = sum([int(cap._meta["fps"] * cap._meta["duration"]) | |
| for cap in self.captures]) | |
| def create_loader(self): | |
| for capture in self.captures: | |
| for image in capture: # RGB | |
| yield image | |
| def __len__(self): | |
| return self.nframes | |
| def __del__(self): | |
| for capture in self.captures: | |
| capture.close() | |
| class ImageListStreamer(BaseStreamer): | |
| """This streamer takes a list of image files as input. | |
| """ | |
| def __init__(self, files, width=512, height=512, pad=True, **kwargs): | |
| super().__init__(width, height, pad, **kwargs) | |
| self.files = files | |
| def create_loader(self): | |
| for f in self.files: | |
| image = cv2.imread(f, cv2.IMREAD_UNCHANGED)[:, :, 0:3] | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # RGB | |
| yield image | |
| def __len__(self): | |
| return len(self.files) | |