Spaces:
Runtime error
Runtime error
| import os | |
| import gradio as gr | |
| from gradio.utils import get_space | |
| from huggingface_hub import InferenceClient | |
| from e2b_code_interpreter import Sandbox | |
| from pathlib import Path | |
| from transformers import AutoTokenizer | |
| if not get_space(): | |
| try: | |
| from dotenv import load_dotenv | |
| load_dotenv() | |
| except (ImportError, ModuleNotFoundError): | |
| pass | |
| from utils import ( | |
| run_interactive_notebook, | |
| create_base_notebook, | |
| update_notebook_display, | |
| ) | |
| E2B_API_KEY = os.environ["E2B_API_KEY"] | |
| HF_TOKEN = os.environ["HF_TOKEN"] | |
| DEFAULT_MAX_TOKENS = 512 | |
| SANDBOXES = {} | |
| with open("ds-system-prompt.txt", "r") as f: | |
| DEFAULT_SYSTEM_PROMPT = f.read() | |
| def execute_jupyter_agent( | |
| sytem_prompt, user_input, max_new_tokens, model, files, message_history, request: gr.Request | |
| ): | |
| if request.session_hash not in SANDBOXES: | |
| SANDBOXES[request.session_hash] = Sandbox(api_key=E2B_API_KEY) | |
| sbx = SANDBOXES[request.session_hash] | |
| client = InferenceClient(api_key=HF_TOKEN) | |
| tokenizer = AutoTokenizer.from_pretrained(model) | |
| # model = "meta-llama/Llama-3.1-8B-Instruct" | |
| filenames = [] | |
| if files is not None: | |
| for filepath in files: | |
| filpath = Path(filepath) | |
| with open(filepath, "rb") as file: | |
| print(f"uploading {filepath}...") | |
| sbx.files.write(filpath.name, file) | |
| filenames.append(filpath.name) | |
| # Initialize message_history if it doesn't exist | |
| if len(message_history) == 0: | |
| message_history.append( | |
| { | |
| "role": "system", | |
| "content": sytem_prompt.format("- " + "\n- ".join(filenames)), | |
| } | |
| ) | |
| message_history.append({"role": "user", "content": user_input}) | |
| print("history:", message_history) | |
| for notebook_html, messages in run_interactive_notebook( | |
| client, model, tokenizer, message_history, sbx, max_new_tokens=max_new_tokens | |
| ): | |
| message_history = messages | |
| yield notebook_html, message_history | |
| def clear(msg_state): | |
| msg_state = [] | |
| return update_notebook_display(create_base_notebook([])[0]), msg_state | |
| css = """ | |
| #component-0 { | |
| height: 100vh; | |
| overflow-y: auto; | |
| padding: 20px; | |
| } | |
| .gradio-container { | |
| height: 100vh !important; | |
| } | |
| .contain { | |
| height: 100vh !important; | |
| } | |
| """ | |
| # Create the interface | |
| with gr.Blocks() as demo: | |
| msg_state = gr.State(value=[]) | |
| html_output = gr.HTML(value=update_notebook_display(create_base_notebook([])[0])) | |
| user_input = gr.Textbox( | |
| value="Solve the Lotka-Volterra equation and plot the results.", lines=3 | |
| ) | |
| with gr.Row(): | |
| generate_btn = gr.Button("Let's go!") | |
| clear_btn = gr.Button("Clear") | |
| with gr.Accordion("Upload files", open=False): | |
| files = gr.File(label="Upload files to use", file_count="multiple") | |
| with gr.Accordion("Advanced Settings", open=False): | |
| system_input = gr.Textbox( | |
| label="System Prompt", | |
| value=DEFAULT_SYSTEM_PROMPT, | |
| elem_classes="input-box", | |
| lines=8, | |
| ) | |
| with gr.Row(): | |
| max_tokens = gr.Number( | |
| label="Max New Tokens", | |
| value=DEFAULT_MAX_TOKENS, | |
| minimum=128, | |
| maximum=2048, | |
| step=8, | |
| interactive=True, | |
| ) | |
| model = gr.Dropdown( | |
| value="meta-llama/Llama-3.1-8B-Instruct", | |
| choices=[ | |
| "meta-llama/Llama-3.2-3B-Instruct", | |
| "meta-llama/Llama-3.1-8B-Instruct", | |
| "meta-llama/Llama-3.1-70B-Instruct", | |
| ], | |
| label="Models" | |
| ) | |
| generate_btn.click( | |
| fn=execute_jupyter_agent, | |
| inputs=[system_input, user_input, max_tokens, model, files, msg_state], | |
| outputs=[html_output, msg_state], | |
| ) | |
| clear_btn.click(fn=clear, inputs=[msg_state], outputs=[html_output, msg_state]) | |
| demo.load( | |
| fn=None, | |
| inputs=None, | |
| outputs=None, | |
| js=""" () => { | |
| if (document.querySelectorAll('.dark').length) { | |
| document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark')); | |
| } | |
| } | |
| """ | |
| ) | |
| demo.launch(ssr_mode=False) | |