Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,161 Bytes
9193cab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import pycolmap
from models.SpaTrackV2.models.predictor import Predictor
import yaml
import easydict
import os
import numpy as np
import cv2
import torch
import torchvision.transforms as T
from PIL import Image
import io
import moviepy.editor as mp
from models.SpaTrackV2.utils.visualizer import Visualizer
import tqdm
from models.SpaTrackV2.models.utils import get_points_on_a_grid
import glob
from rich import print
import argparse
import decord
from models.SpaTrackV2.models.vggt4track.models.vggt_moe import VGGT4Track
from models.SpaTrackV2.models.vggt4track.utils.load_fn import preprocess_image
from models.SpaTrackV2.models.vggt4track.utils.pose_enc import pose_encoding_to_extri_intri
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--track_mode", type=str, default="offline")
parser.add_argument("--data_type", type=str, default="RGBD")
parser.add_argument("--data_dir", type=str, default="assets/example0")
parser.add_argument("--video_name", type=str, default="snowboard")
parser.add_argument("--grid_size", type=int, default=10)
parser.add_argument("--vo_points", type=int, default=756)
parser.add_argument("--fps", type=int, default=1)
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
out_dir = args.data_dir + "/results"
# fps
fps = int(args.fps)
mask_dir = args.data_dir + f"/{args.video_name}.png"
vggt4track_model = VGGT4Track.from_pretrained("Yuxihenry/SpatialTrackerV2_Front")
vggt4track_model.eval()
vggt4track_model = vggt4track_model.to("cuda")
if args.data_type == "RGBD":
npz_dir = args.data_dir + f"/{args.video_name}.npz"
data_npz_load = dict(np.load(npz_dir, allow_pickle=True))
#TODO: tapip format
video_tensor = data_npz_load["video"] * 255
video_tensor = torch.from_numpy(video_tensor)
video_tensor = video_tensor[::fps]
depth_tensor = data_npz_load["depths"]
depth_tensor = depth_tensor[::fps]
intrs = data_npz_load["intrinsics"]
intrs = intrs[::fps]
extrs = np.linalg.inv(data_npz_load["extrinsics"])
extrs = extrs[::fps]
unc_metric = None
elif args.data_type == "RGB":
vid_dir = os.path.join(args.data_dir, f"{args.video_name}.mp4")
video_reader = decord.VideoReader(vid_dir)
video_tensor = torch.from_numpy(video_reader.get_batch(range(len(video_reader))).asnumpy()).permute(0, 3, 1, 2) # Convert to tensor and permute to (N, C, H, W)
video_tensor = video_tensor[::fps].float()
# process the image tensor
video_tensor = preprocess_image(video_tensor)[None]
with torch.no_grad():
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
# Predict attributes including cameras, depth maps, and point maps.
predictions = vggt4track_model(video_tensor.cuda()/255)
extrinsic, intrinsic = predictions["poses_pred"], predictions["intrs"]
depth_map, depth_conf = predictions["points_map"][..., 2], predictions["unc_metric"]
depth_tensor = depth_map.squeeze().cpu().numpy()
extrs = np.eye(4)[None].repeat(len(depth_tensor), axis=0)
extrs = extrinsic.squeeze().cpu().numpy()
intrs = intrinsic.squeeze().cpu().numpy()
video_tensor = video_tensor.squeeze()
#NOTE: 20% of the depth is not reliable
# threshold = depth_conf.squeeze()[0].view(-1).quantile(0.6).item()
unc_metric = depth_conf.squeeze().cpu().numpy() > 0.5
data_npz_load = {}
if os.path.exists(mask_dir):
mask_files = mask_dir
mask = cv2.imread(mask_files)
mask = cv2.resize(mask, (video_tensor.shape[3], video_tensor.shape[2]))
mask = mask.sum(axis=-1)>0
else:
mask = np.ones_like(video_tensor[0,0].numpy())>0
# get all data pieces
viz = True
os.makedirs(out_dir, exist_ok=True)
# with open(cfg_dir, "r") as f:
# cfg = yaml.load(f, Loader=yaml.FullLoader)
# cfg = easydict.EasyDict(cfg)
# cfg.out_dir = out_dir
# cfg.model.track_num = args.vo_points
# print(f"Downloading model from HuggingFace: {cfg.ckpts}")
if args.track_mode == "offline":
model = Predictor.from_pretrained("Yuxihenry/SpatialTrackerV2-Offline")
else:
model = Predictor.from_pretrained("Yuxihenry/SpatialTrackerV2-Online")
# config the model; the track_num is the number of points in the grid
model.spatrack.track_num = args.vo_points
model.eval()
model.to("cuda")
viser = Visualizer(save_dir=out_dir, grayscale=True,
fps=10, pad_value=0, tracks_leave_trace=5)
grid_size = args.grid_size
# get frame H W
if video_tensor is None:
cap = cv2.VideoCapture(video_path)
frame_H = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_W = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
else:
frame_H, frame_W = video_tensor.shape[2:]
grid_pts = get_points_on_a_grid(grid_size, (frame_H, frame_W), device="cpu")
# Sample mask values at grid points and filter out points where mask=0
if os.path.exists(mask_dir):
grid_pts_int = grid_pts[0].long()
mask_values = mask[grid_pts_int[...,1], grid_pts_int[...,0]]
grid_pts = grid_pts[:, mask_values]
query_xyt = torch.cat([torch.zeros_like(grid_pts[:, :, :1]), grid_pts], dim=2)[0].numpy()
# Run model inference
with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16):
(
c2w_traj, intrs, point_map, conf_depth,
track3d_pred, track2d_pred, vis_pred, conf_pred, video
) = model.forward(video_tensor, depth=depth_tensor,
intrs=intrs, extrs=extrs,
queries=query_xyt,
fps=1, full_point=False, iters_track=4,
query_no_BA=True, fixed_cam=False, stage=1, unc_metric=unc_metric,
support_frame=len(video_tensor)-1, replace_ratio=0.2)
# resize the results to avoid too large I/O Burden
# depth and image, the maximum side is 336
max_size = 336
h, w = video.shape[2:]
scale = min(max_size / h, max_size / w)
if scale < 1:
new_h, new_w = int(h * scale), int(w * scale)
video = T.Resize((new_h, new_w))(video)
video_tensor = T.Resize((new_h, new_w))(video_tensor)
point_map = T.Resize((new_h, new_w))(point_map)
conf_depth = T.Resize((new_h, new_w))(conf_depth)
track2d_pred[...,:2] = track2d_pred[...,:2] * scale
intrs[:,:2,:] = intrs[:,:2,:] * scale
if depth_tensor is not None:
if isinstance(depth_tensor, torch.Tensor):
depth_tensor = T.Resize((new_h, new_w))(depth_tensor)
else:
depth_tensor = T.Resize((new_h, new_w))(torch.from_numpy(depth_tensor))
if viz:
viser.visualize(video=video[None],
tracks=track2d_pred[None][...,:2],
visibility=vis_pred[None],filename="test")
# save as the tapip3d format
data_npz_load["coords"] = (torch.einsum("tij,tnj->tni", c2w_traj[:,:3,:3], track3d_pred[:,:,:3].cpu()) + c2w_traj[:,:3,3][:,None,:]).numpy()
data_npz_load["extrinsics"] = torch.inverse(c2w_traj).cpu().numpy()
data_npz_load["intrinsics"] = intrs.cpu().numpy()
depth_save = point_map[:,2,...]
depth_save[conf_depth<0.5] = 0
data_npz_load["depths"] = depth_save.cpu().numpy()
data_npz_load["video"] = (video_tensor).cpu().numpy()/255
data_npz_load["visibs"] = vis_pred.cpu().numpy()
data_npz_load["unc_metric"] = conf_depth.cpu().numpy()
np.savez(os.path.join(out_dir, f'result.npz'), **data_npz_load)
print(f"Results saved to {out_dir}.\nTo visualize them with tapip3d, run: [bold yellow]python tapip3d_viz.py {out_dir}/result.npz[/bold yellow]")
|