File size: 8,161 Bytes
9193cab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import pycolmap
from models.SpaTrackV2.models.predictor import Predictor
import yaml
import easydict
import os
import numpy as np
import cv2
import torch
import torchvision.transforms as T
from PIL import Image
import io
import moviepy.editor as mp
from models.SpaTrackV2.utils.visualizer import Visualizer
import tqdm
from models.SpaTrackV2.models.utils import get_points_on_a_grid
import glob
from rich import print
import argparse
import decord
from models.SpaTrackV2.models.vggt4track.models.vggt_moe import VGGT4Track
from models.SpaTrackV2.models.vggt4track.utils.load_fn import preprocess_image
from models.SpaTrackV2.models.vggt4track.utils.pose_enc import pose_encoding_to_extri_intri

def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--track_mode", type=str, default="offline")
    parser.add_argument("--data_type", type=str, default="RGBD")
    parser.add_argument("--data_dir", type=str, default="assets/example0")
    parser.add_argument("--video_name", type=str, default="snowboard")
    parser.add_argument("--grid_size", type=int, default=10)
    parser.add_argument("--vo_points", type=int, default=756)
    parser.add_argument("--fps", type=int, default=1)
    return parser.parse_args()

if __name__ == "__main__":
    args = parse_args()
    out_dir = args.data_dir + "/results"
    # fps
    fps = int(args.fps)
    mask_dir = args.data_dir + f"/{args.video_name}.png"
    
    vggt4track_model = VGGT4Track.from_pretrained("Yuxihenry/SpatialTrackerV2_Front")
    vggt4track_model.eval()
    vggt4track_model = vggt4track_model.to("cuda")

    if args.data_type == "RGBD":
        npz_dir = args.data_dir + f"/{args.video_name}.npz"
        data_npz_load = dict(np.load(npz_dir, allow_pickle=True))
        #TODO: tapip format
        video_tensor = data_npz_load["video"] * 255
        video_tensor = torch.from_numpy(video_tensor)
        video_tensor = video_tensor[::fps]
        depth_tensor = data_npz_load["depths"]
        depth_tensor = depth_tensor[::fps]
        intrs = data_npz_load["intrinsics"]
        intrs = intrs[::fps]
        extrs = np.linalg.inv(data_npz_load["extrinsics"])
        extrs = extrs[::fps]
        unc_metric = None
    elif args.data_type == "RGB":
        vid_dir = os.path.join(args.data_dir, f"{args.video_name}.mp4")
        video_reader = decord.VideoReader(vid_dir)
        video_tensor = torch.from_numpy(video_reader.get_batch(range(len(video_reader))).asnumpy()).permute(0, 3, 1, 2)  # Convert to tensor and permute to (N, C, H, W)
        video_tensor = video_tensor[::fps].float()

        # process the image tensor
        video_tensor = preprocess_image(video_tensor)[None]
        with torch.no_grad():
            with torch.cuda.amp.autocast(dtype=torch.bfloat16):
                # Predict attributes including cameras, depth maps, and point maps.
                predictions = vggt4track_model(video_tensor.cuda()/255)
                extrinsic, intrinsic = predictions["poses_pred"], predictions["intrs"]
                depth_map, depth_conf = predictions["points_map"][..., 2], predictions["unc_metric"]
        
        depth_tensor = depth_map.squeeze().cpu().numpy()
        extrs = np.eye(4)[None].repeat(len(depth_tensor), axis=0)
        extrs = extrinsic.squeeze().cpu().numpy()
        intrs = intrinsic.squeeze().cpu().numpy()
        video_tensor = video_tensor.squeeze()
        #NOTE: 20% of the depth is not reliable
        # threshold = depth_conf.squeeze()[0].view(-1).quantile(0.6).item()
        unc_metric = depth_conf.squeeze().cpu().numpy() > 0.5

        data_npz_load = {}
    
    if os.path.exists(mask_dir):
        mask_files = mask_dir
        mask = cv2.imread(mask_files)
        mask = cv2.resize(mask, (video_tensor.shape[3], video_tensor.shape[2]))
        mask = mask.sum(axis=-1)>0
    else:
        mask = np.ones_like(video_tensor[0,0].numpy())>0
        
    # get all data pieces
    viz = True
    os.makedirs(out_dir, exist_ok=True)
        
    # with open(cfg_dir, "r") as f:
    #     cfg = yaml.load(f, Loader=yaml.FullLoader)
    # cfg = easydict.EasyDict(cfg)
    # cfg.out_dir = out_dir
    # cfg.model.track_num = args.vo_points
    # print(f"Downloading model from HuggingFace: {cfg.ckpts}")
    if args.track_mode == "offline":
        model = Predictor.from_pretrained("Yuxihenry/SpatialTrackerV2-Offline")
    else:
        model = Predictor.from_pretrained("Yuxihenry/SpatialTrackerV2-Online")

    # config the model; the track_num is the number of points in the grid
    model.spatrack.track_num = args.vo_points
    
    model.eval()
    model.to("cuda")
    viser = Visualizer(save_dir=out_dir, grayscale=True, 
                     fps=10, pad_value=0, tracks_leave_trace=5)
    
    grid_size = args.grid_size

    # get frame H W
    if video_tensor is  None:
        cap = cv2.VideoCapture(video_path)
        frame_H = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        frame_W = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    else:
        frame_H, frame_W = video_tensor.shape[2:]
    grid_pts = get_points_on_a_grid(grid_size, (frame_H, frame_W), device="cpu")
    
    # Sample mask values at grid points and filter out points where mask=0
    if os.path.exists(mask_dir):
        grid_pts_int = grid_pts[0].long()
        mask_values = mask[grid_pts_int[...,1], grid_pts_int[...,0]]
        grid_pts = grid_pts[:, mask_values]
    
    query_xyt = torch.cat([torch.zeros_like(grid_pts[:, :, :1]), grid_pts], dim=2)[0].numpy()

    # Run model inference
    with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16):
        (
            c2w_traj, intrs, point_map, conf_depth,
            track3d_pred, track2d_pred, vis_pred, conf_pred, video
        ) = model.forward(video_tensor, depth=depth_tensor,
                            intrs=intrs, extrs=extrs, 
                            queries=query_xyt,
                            fps=1, full_point=False, iters_track=4,
                            query_no_BA=True, fixed_cam=False, stage=1, unc_metric=unc_metric,
                            support_frame=len(video_tensor)-1, replace_ratio=0.2) 
        
        # resize the results to avoid too large I/O Burden
        # depth and image, the maximum side is 336
        max_size = 336
        h, w = video.shape[2:]
        scale = min(max_size / h, max_size / w)
        if scale < 1:
            new_h, new_w = int(h * scale), int(w * scale)
            video = T.Resize((new_h, new_w))(video)
            video_tensor = T.Resize((new_h, new_w))(video_tensor)
            point_map = T.Resize((new_h, new_w))(point_map)
            conf_depth = T.Resize((new_h, new_w))(conf_depth)
            track2d_pred[...,:2] = track2d_pred[...,:2] * scale
            intrs[:,:2,:] = intrs[:,:2,:] * scale
            if depth_tensor is not None:
                if isinstance(depth_tensor, torch.Tensor):
                    depth_tensor = T.Resize((new_h, new_w))(depth_tensor)
                else:
                    depth_tensor = T.Resize((new_h, new_w))(torch.from_numpy(depth_tensor))

        if viz:
            viser.visualize(video=video[None],
                                tracks=track2d_pred[None][...,:2],
                                visibility=vis_pred[None],filename="test")

        # save as the tapip3d format   
        data_npz_load["coords"] = (torch.einsum("tij,tnj->tni", c2w_traj[:,:3,:3], track3d_pred[:,:,:3].cpu()) + c2w_traj[:,:3,3][:,None,:]).numpy()
        data_npz_load["extrinsics"] = torch.inverse(c2w_traj).cpu().numpy()
        data_npz_load["intrinsics"] = intrs.cpu().numpy()
        depth_save = point_map[:,2,...]
        depth_save[conf_depth<0.5] = 0
        data_npz_load["depths"] = depth_save.cpu().numpy()
        data_npz_load["video"] = (video_tensor).cpu().numpy()/255
        data_npz_load["visibs"] = vis_pred.cpu().numpy()
        data_npz_load["unc_metric"] = conf_depth.cpu().numpy()
        np.savez(os.path.join(out_dir, f'result.npz'), **data_npz_load)

        print(f"Results saved to {out_dir}.\nTo visualize them with tapip3d, run: [bold yellow]python tapip3d_viz.py {out_dir}/result.npz[/bold yellow]")