from PIL import Image from models.monoD import depth_pro # Load model and preprocessing transform model, transform = depth_pro.create_model_and_transforms() model.eval() # Load and preprocess an image. image_path = "assets/dance/00000.jpg" image, _, f_px = depth_pro.load_rgb(image_path) image = transform(image) # Run inference. import time t0 = time.time() prediction = model.infer(image, f_px=f_px) depth = prediction["depth"] # Depth in [m]. focallength_px = prediction["focallength_px"] # Focal length in pixels. import cv2 import numpy as np depth = depth.clamp(0,30).squeeze().detach().cpu().numpy() depth = (depth - depth.min())/(depth.max()-depth.min()) * 255.0 depth = depth.astype(np.uint8) depth = cv2.applyColorMap(depth, cv2.COLORMAP_INFERNO) cv2.imwrite("depth.png", depth) print(f"Time: {time.time() - t0:.2f}s") import pdb; pdb.set_trace()