Update app.py
Browse files
app.py
CHANGED
@@ -2,8 +2,9 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
5 |
-
from torchvision import models
|
6 |
-
from torchvision import
|
|
|
7 |
from transformers import ViTForImageClassification
|
8 |
from torch import nn
|
9 |
from torch.cuda.amp import autocast
|
@@ -25,35 +26,39 @@ label_mapping = {
|
|
25 |
6: "Сосудистые поражения"
|
26 |
}
|
27 |
|
28 |
-
#
|
29 |
-
CHECKPOINTS_PATH = os.getenv("CHECKPOINTS_PATH", "./")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
# Model definitions
|
32 |
def get_efficientnet():
|
33 |
model = models.efficientnet_v2_s(weights="IMAGENET1K_V1")
|
34 |
-
model.classifier[1] = nn.Linear(1280,
|
35 |
return model.to(device)
|
36 |
|
37 |
def get_deit():
|
38 |
model = ViTForImageClassification.from_pretrained(
|
39 |
'facebook/deit-base-patch16-224',
|
40 |
-
num_labels=
|
41 |
ignore_mismatched_sizes=True
|
42 |
)
|
43 |
return model.to(device)
|
44 |
|
45 |
# Transforms
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
def transform_image(image):
|
47 |
-
|
48 |
-
transform = transforms.Compose([
|
49 |
-
transforms.Resize((224, 224)),
|
50 |
-
transforms.ToTensor(),
|
51 |
-
transforms.Normalize(
|
52 |
-
mean=[0.485, 0.456, 0.406],
|
53 |
-
std=[0.229, 0.224, 0.225]
|
54 |
-
)
|
55 |
-
])
|
56 |
-
return transform(image).unsqueeze(0).to(device)
|
57 |
|
58 |
# Model Handler
|
59 |
class ModelHandler:
|
@@ -65,13 +70,11 @@ class ModelHandler:
|
|
65 |
|
66 |
def load_models(self):
|
67 |
try:
|
68 |
-
# Load EfficientNet
|
69 |
self.efficientnet = get_efficientnet()
|
70 |
-
|
71 |
-
self.efficientnet.load_state_dict(torch.load(
|
72 |
self.efficientnet.eval()
|
73 |
|
74 |
-
# Load DeiT
|
75 |
self.deit = get_deit()
|
76 |
deit_path = os.path.join(CHECKPOINTS_PATH, "deit_best.pth")
|
77 |
self.deit.load_state_dict(torch.load(deit_path, map_location=device))
|
@@ -80,79 +83,111 @@ class ModelHandler:
|
|
80 |
self.models_loaded = True
|
81 |
print("✅ Models loaded successfully")
|
82 |
except Exception as e:
|
83 |
-
print(f"❌ Error loading models: {
|
84 |
self.models_loaded = False
|
85 |
|
86 |
@torch.no_grad()
|
87 |
-
def
|
88 |
-
if not self.models_loaded:
|
89 |
-
return {"error": "Модели не загружены"}
|
90 |
-
|
91 |
-
inputs = transform_image(image)
|
92 |
-
# Handle autocast based on device
|
93 |
-
ctx = autocast() if device.type == 'cuda' else nullcontext()
|
94 |
-
with ctx:
|
95 |
-
outputs = self.efficientnet(inputs)
|
96 |
-
probs = torch.nn.functional.softmax(outputs, dim=1)
|
97 |
-
|
98 |
-
return self._format_predictions(probs)
|
99 |
-
|
100 |
-
@torch.no_grad()
|
101 |
-
def predict_deit(self, image):
|
102 |
if not self.models_loaded:
|
103 |
return {"error": "Модели не загружены"}
|
104 |
-
|
105 |
inputs = transform_image(image)
|
106 |
ctx = autocast() if device.type == 'cuda' else nullcontext()
|
107 |
with ctx:
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
111 |
return self._format_predictions(probs)
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
|
118 |
-
|
119 |
-
ctx = autocast() if device.type == 'cuda' else nullcontext()
|
120 |
-
with ctx:
|
121 |
-
eff_probs = torch.nn.functional.softmax(self.efficientnet(inputs), dim=1)
|
122 |
-
deit_probs = torch.nn.functional.softmax(self.deit(pixel_values=inputs).logits, dim=1)
|
123 |
-
ensemble_probs = (eff_probs + deit_probs) / 2
|
124 |
-
|
125 |
-
return self._format_predictions(ensemble_probs)
|
126 |
-
|
127 |
-
def _format_predictions(self, probs): # Corrected indentation
|
128 |
-
top5_probs, top5_indices = torch.topk(probs, 5)
|
129 |
-
result = {}
|
130 |
-
for i in range(5):
|
131 |
-
idx = top5_indices[0][i].item()
|
132 |
-
label = label_mapping.get(idx, f"Класс {idx}")
|
133 |
-
result[label] = float(top5_probs[0][i].item())
|
134 |
-
return result
|
135 |
-
|
136 |
-
# Initialize model handler
|
137 |
model_handler = ModelHandler()
|
138 |
|
139 |
-
# Prediction wrappers
|
140 |
def predict_efficientnet(image):
|
141 |
-
if image is None
|
142 |
-
return "⚠️ Загрузите изображение"
|
143 |
-
return model_handler.predict_efficientnet(image)
|
144 |
|
145 |
def predict_deit(image):
|
146 |
-
if image is None
|
147 |
-
return "⚠️ Загрузите изображение"
|
148 |
-
return model_handler.predict_deit(image)
|
149 |
|
150 |
def predict_ensemble(image):
|
151 |
-
if image is None
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
def create_interface():
|
157 |
with gr.Blocks() as demo:
|
158 |
gr.Markdown("# Диагностика кожных поражений (HAM10K)")
|
@@ -161,30 +196,27 @@ def create_interface():
|
|
161 |
|
162 |
with gr.Tabs():
|
163 |
with gr.TabItem("EfficientNet"):
|
164 |
-
img = gr.Image(label="Загрузите изображение",
|
165 |
-
|
166 |
-
out = gr.Label(label="Результаты")
|
167 |
-
btn.click(predict_efficientnet, inputs=img, outputs=out)
|
168 |
-
gr.Examples(examples=["examples/akiec.jpg", "examples/bcc.jpg", "examples/df.jpg"], inputs=img)
|
169 |
|
170 |
with gr.TabItem("DeiT"):
|
171 |
-
img = gr.Image(label="Загрузите изображение",
|
172 |
-
|
173 |
-
out = gr.Label(label="Результаты")
|
174 |
-
btn.click(predict_deit, inputs=img, outputs=out)
|
175 |
-
gr.Examples(examples=["examples/akiec.jpg", "examples/bcc.jpg", "examples/df.jpg"], inputs=img)
|
176 |
|
177 |
with gr.TabItem("Ансамблевая модель"):
|
178 |
-
img = gr.Image(label="Загрузите изображение",
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
gr.
|
|
|
|
|
|
|
|
|
183 |
|
184 |
return demo
|
185 |
|
186 |
-
# Launch interface
|
187 |
if __name__ == "__main__":
|
188 |
interface = create_interface()
|
189 |
print("🚀 Запуск интерфейса...")
|
190 |
-
interface.launch(server_port=7860)
|
|
|
2 |
import torch
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
5 |
+
from torchvision import models, transforms
|
6 |
+
from torchvision.datasets import ImageFolder
|
7 |
+
from torch.utils.data import DataLoader
|
8 |
from transformers import ViTForImageClassification
|
9 |
from torch import nn
|
10 |
from torch.cuda.amp import autocast
|
|
|
26 |
6: "Сосудистые поражения"
|
27 |
}
|
28 |
|
29 |
+
# Paths and hyperparams
|
30 |
+
CHECKPOINTS_PATH = os.getenv("CHECKPOINTS_PATH", "./checkpoints")
|
31 |
+
SUBMISSIONS_PATH = os.getenv("SUBMISSIONS_PATH", "./submissions")
|
32 |
+
FT_BATCH = 32
|
33 |
+
FT_EPOCHS = 1 # adjust as needed
|
34 |
+
LR = 1e-4
|
35 |
+
|
36 |
+
os.makedirs(CHECKPOINTS_PATH, exist_ok=True)
|
37 |
+
os.makedirs(SUBMISSIONS_PATH, exist_ok=True)
|
38 |
|
39 |
# Model definitions
|
40 |
def get_efficientnet():
|
41 |
model = models.efficientnet_v2_s(weights="IMAGENET1K_V1")
|
42 |
+
model.classifier[1] = nn.Linear(1280, len(label_mapping))
|
43 |
return model.to(device)
|
44 |
|
45 |
def get_deit():
|
46 |
model = ViTForImageClassification.from_pretrained(
|
47 |
'facebook/deit-base-patch16-224',
|
48 |
+
num_labels=len(label_mapping),
|
49 |
ignore_mismatched_sizes=True
|
50 |
)
|
51 |
return model.to(device)
|
52 |
|
53 |
# Transforms
|
54 |
+
train_transform = transforms.Compose([
|
55 |
+
transforms.Resize((224, 224)),
|
56 |
+
transforms.ToTensor(),
|
57 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
58 |
+
])
|
59 |
+
|
60 |
def transform_image(image):
|
61 |
+
return train_transform(image).unsqueeze(0).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
# Model Handler
|
64 |
class ModelHandler:
|
|
|
70 |
|
71 |
def load_models(self):
|
72 |
try:
|
|
|
73 |
self.efficientnet = get_efficientnet()
|
74 |
+
eff_path = os.path.join(CHECKPOINTS_PATH, "efficientnet_best.pth")
|
75 |
+
self.efficientnet.load_state_dict(torch.load(eff_path, map_location=device))
|
76 |
self.efficientnet.eval()
|
77 |
|
|
|
78 |
self.deit = get_deit()
|
79 |
deit_path = os.path.join(CHECKPOINTS_PATH, "deit_best.pth")
|
80 |
self.deit.load_state_dict(torch.load(deit_path, map_location=device))
|
|
|
83 |
self.models_loaded = True
|
84 |
print("✅ Models loaded successfully")
|
85 |
except Exception as e:
|
86 |
+
print(f"❌ Error loading models: {e}")
|
87 |
self.models_loaded = False
|
88 |
|
89 |
@torch.no_grad()
|
90 |
+
def predict(self, image, use='efficientnet'):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
if not self.models_loaded:
|
92 |
return {"error": "Модели не загружены"}
|
|
|
93 |
inputs = transform_image(image)
|
94 |
ctx = autocast() if device.type == 'cuda' else nullcontext()
|
95 |
with ctx:
|
96 |
+
if use == 'efficientnet':
|
97 |
+
logits = self.efficientnet(inputs)
|
98 |
+
elif use == 'deit':
|
99 |
+
logits = self.deit(pixel_values=inputs).logits
|
100 |
+
else:
|
101 |
+
logits = (self.efficientnet(inputs) + self.deit(pixel_values=inputs).logits) / 2
|
102 |
+
probs = torch.nn.functional.softmax(logits, dim=1)
|
103 |
return self._format_predictions(probs)
|
104 |
|
105 |
+
def _format_predictions(self, probs):
|
106 |
+
top5_probs, top5_inds = torch.topk(probs, 5)
|
107 |
+
return {label_mapping[i.item()]: float(top5_probs[0][k].item())
|
108 |
+
for k, i in enumerate(top5_inds[0])}
|
109 |
|
110 |
+
# Initialize handler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
model_handler = ModelHandler()
|
112 |
|
|
|
113 |
def predict_efficientnet(image):
|
114 |
+
return "⚠️ Загрузите изображение" if image is None else model_handler.predict(image, 'efficientnet')
|
|
|
|
|
115 |
|
116 |
def predict_deit(image):
|
117 |
+
return "⚠️ Загрузите изображение" if image is None else model_handler.predict(image, 'deit')
|
|
|
|
|
118 |
|
119 |
def predict_ensemble(image):
|
120 |
+
return "⚠️ Загрузите изображение" if image is None else model_handler.predict(image, 'ensemble')
|
121 |
+
|
122 |
+
# Finetuning logic
|
123 |
+
|
124 |
+
def finetune_models():
|
125 |
+
# Prepare dataset
|
126 |
+
dataset = ImageFolder(SUBMISSIONS_PATH, transform=train_transform)
|
127 |
+
loader = DataLoader(dataset, batch_size=8, shuffle=True)
|
128 |
+
|
129 |
+
# Finetune EfficientNet
|
130 |
+
eff = get_efficientnet()
|
131 |
+
eff.load_state_dict(torch.load(os.path.join(CHECKPOINTS_PATH, "efficientnet_best.pth"), map_location=device))
|
132 |
+
eff.train()
|
133 |
+
optimizer = torch.optim.Adam(eff.parameters(), lr=LR)
|
134 |
+
criterion = nn.CrossEntropyLoss()
|
135 |
+
for epoch in range(FT_EPOCHS):
|
136 |
+
for imgs, lbls in loader:
|
137 |
+
imgs, lbls = imgs.to(device), lbls.to(device)
|
138 |
+
optimizer.zero_grad()
|
139 |
+
outputs = eff(imgs)
|
140 |
+
loss = criterion(outputs, lbls)
|
141 |
+
loss.backward()
|
142 |
+
optimizer.step()
|
143 |
+
torch.save(eff.state_dict(), os.path.join(CHECKPOINTS_PATH, "efficientnet_best.pth"))
|
144 |
+
|
145 |
+
# Finetune DeiT
|
146 |
+
dt = get_deit()
|
147 |
+
dt.load_state_dict(torch.load(os.path.join(CHECKPOINTS_PATH, "deit_best.pth"), map_location=device))
|
148 |
+
dt.train()
|
149 |
+
optimizer = torch.optim.Adam(dt.parameters(), lr=LR)
|
150 |
+
for epoch in range(FT_EPOCHS):
|
151 |
+
for imgs, lbls in loader:
|
152 |
+
imgs, lbls = imgs.to(device), lbls.to(device)
|
153 |
+
optimizer.zero_grad()
|
154 |
+
outputs = dt(pixel_values=imgs).logits
|
155 |
+
loss = criterion(outputs, lbls)
|
156 |
+
loss.backward()
|
157 |
+
optimizer.step()
|
158 |
+
torch.save(dt.state_dict(), os.path.join(CHECKPOINTS_PATH, "deit_best.pth"))
|
159 |
+
|
160 |
+
# Reload into handler
|
161 |
+
model_handler.load_models()
|
162 |
+
print("🔄 Models fine-tuned and reloaded")
|
163 |
+
|
164 |
+
|
165 |
+
def handle_submission(image, label):
|
166 |
+
if image is None or label is None:
|
167 |
+
return "⚠️ Загрузите изображение и выберите метку"
|
168 |
+
# Save image under label folder
|
169 |
+
lbl_dir = os.path.join(SUBMISSIONS_PATH, str(label))
|
170 |
+
os.makedirs(lbl_dir, exist_ok=True)
|
171 |
+
idx = len([f for f in os.listdir(lbl_dir) if f.endswith(('.png','.jpg'))]) + 1
|
172 |
+
path = os.path.join(lbl_dir, f"{label}_{idx}.png")
|
173 |
+
image.save(path)
|
174 |
+
|
175 |
+
# Count total submissions
|
176 |
+
total = sum(len(files) for _, _, files in os.walk(SUBMISSIONS_PATH))
|
177 |
+
rem = FT_BATCH - (total % FT_BATCH)
|
178 |
+
if rem == FT_BATCH:
|
179 |
+
rem = 0 # just reached batch multiple
|
180 |
+
# Trigger finetune if batch complete
|
181 |
+
if total % FT_BATCH == 0:
|
182 |
+
finetune_models()
|
183 |
+
# Clear submissions
|
184 |
+
for root, _, files in os.walk(SUBMISSIONS_PATH):
|
185 |
+
for f in files:
|
186 |
+
os.remove(os.path.join(root, f))
|
187 |
+
|
188 |
+
return f"Осталось {rem} изображений до следующей тонкой настройки"
|
189 |
+
|
190 |
+
# Create Gradio interface
|
191 |
def create_interface():
|
192 |
with gr.Blocks() as demo:
|
193 |
gr.Markdown("# Диагностика кожных поражений (HAM10K)")
|
|
|
196 |
|
197 |
with gr.Tabs():
|
198 |
with gr.TabItem("EfficientNet"):
|
199 |
+
img, out = gr.Image(type="pil", label="Загрузите изображение"), gr.Label(label="Результаты")
|
200 |
+
gr.Button("Предсказать").click(predict_efficientnet, inputs=img, outputs=out)
|
|
|
|
|
|
|
201 |
|
202 |
with gr.TabItem("DeiT"):
|
203 |
+
img, out = gr.Image(type="pil", label="Загрузите изображение"), gr.Label(label="Результаты")
|
204 |
+
gr.Button("Предсказать").click(predict_deit, inputs=img, outputs=out)
|
|
|
|
|
|
|
205 |
|
206 |
with gr.TabItem("Ансамблевая модель"):
|
207 |
+
img, out = gr.Image(type="pil", label="Загрузите изображение"), gr.Label(label="Результаты")
|
208 |
+
gr.Button("Предсказать").click(predict_ensemble, inputs=img, outputs=out)
|
209 |
+
|
210 |
+
with gr.TabItem("Submit for Finetuning"):
|
211 |
+
sub_img = gr.Image(type="pil", label="Изображение для тонкой настройки")
|
212 |
+
sub_lbl = gr.Dropdown(choices=list(label_mapping.values()), label="Выберите метку")
|
213 |
+
sub_btn = gr.Button("Отправить")
|
214 |
+
sub_out = gr.Textbox(label="Статус")
|
215 |
+
sub_btn.click(handle_submission, inputs=[sub_img, sub_lbl], outputs=sub_out)
|
216 |
|
217 |
return demo
|
218 |
|
|
|
219 |
if __name__ == "__main__":
|
220 |
interface = create_interface()
|
221 |
print("🚀 Запуск интерфейса...")
|
222 |
+
interface.launch(server_port=7860)
|