Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
from torchvision import models
|
6 |
+
from transformers import ViTForImageClassification
|
7 |
+
from torch import nn
|
8 |
+
from torch.cuda.amp import autocast
|
9 |
+
import os
|
10 |
+
|
11 |
+
# Global configuration
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
print(f"Using device: {device}")
|
14 |
+
|
15 |
+
# Label mapping (HAM10K)
|
16 |
+
label_mapping = {
|
17 |
+
0: "Меланома",
|
18 |
+
1: "Меланоцитарный невус",
|
19 |
+
2: "Базальноклеточная карцинома",
|
20 |
+
3: "Актинический кератоз",
|
21 |
+
4: "Доброкачественная кератоза",
|
22 |
+
5: "Дерматофиброма",
|
23 |
+
6: "Сосудистые поражения"
|
24 |
+
}
|
25 |
+
|
26 |
+
# Model paths
|
27 |
+
CHECKPOINTS_PATH = os.getenv("CHECKPOINTS_PATH", "./checkpoints")
|
28 |
+
|
29 |
+
# Model definitions
|
30 |
+
def get_efficientnet():
|
31 |
+
model = models.efficientnet_v2_s(weights="IMAGENET1K_V1")
|
32 |
+
model.classifier[1] = nn.Linear(1280, 7)
|
33 |
+
return model.to(device)
|
34 |
+
|
35 |
+
def get_deit():
|
36 |
+
model = ViTForImageClassification.from_pretrained(
|
37 |
+
'facebook/deit-base-patch16-224',
|
38 |
+
num_labels=7,
|
39 |
+
ignore_mismatched_sizes=True
|
40 |
+
)
|
41 |
+
return model.to(device)
|
42 |
+
|
43 |
+
# Transforms
|
44 |
+
def transform_image(image):
|
45 |
+
"""Transform PIL image to model input format"""
|
46 |
+
transform = transforms.Compose([
|
47 |
+
transforms.Resize((224, 224)),
|
48 |
+
transforms.ToTensor(),
|
49 |
+
transforms.Normalize(
|
50 |
+
mean=[0.485, 0.456, 0.406],
|
51 |
+
std=[0.229, 0.224, 0.225]
|
52 |
+
)
|
53 |
+
])
|
54 |
+
return transform(image).unsqueeze(0).to(device)
|
55 |
+
|
56 |
+
# Model Handler
|
57 |
+
class ModelHandler:
|
58 |
+
def __init__(self):
|
59 |
+
self.efficientnet = None
|
60 |
+
self.deit = None
|
61 |
+
self.models_loaded = False
|
62 |
+
self.load_models()
|
63 |
+
|
64 |
+
def load_models(self):
|
65 |
+
try:
|
66 |
+
# Load EfficientNet
|
67 |
+
self.efficientnet = get_efficientnet()
|
68 |
+
efficientnet_path = os.path.join(CHECKPOINTS_PATH, "efficientnet_best.pth")
|
69 |
+
self.efficientnet.load_state_dict(torch.load(efficientnet_path, map_location=device))
|
70 |
+
self.efficientnet.eval()
|
71 |
+
|
72 |
+
# Load DeiT
|
73 |
+
self.deit = get_deit()
|
74 |
+
deit_path = os.path.join(CHECKPOINTS_PATH, "deit_best.pth")
|
75 |
+
self.deit.load_state_dict(torch.load(deit_path, map_location=device))
|
76 |
+
self.deit.eval()
|
77 |
+
|
78 |
+
self.models_loaded = True
|
79 |
+
print("✅ Models loaded successfully")
|
80 |
+
except Exception as e:
|
81 |
+
print(f"❌ Error loading models: {str(e)}")
|
82 |
+
self.models_loaded = False
|
83 |
+
|
84 |
+
@torch.no_grad()
|
85 |
+
def predict_efficientnet(self, image):
|
86 |
+
if not self.models_loaded:
|
87 |
+
return {"error": "Модели не загружены"}
|
88 |
+
|
89 |
+
inputs = transform_image(image)
|
90 |
+
with autocast():
|
91 |
+
outputs = self.efficientnet(inputs)
|
92 |
+
probs = torch.nn.functional.softmax(outputs, dim=1)
|
93 |
+
|
94 |
+
return self._format_predictions(probs)
|
95 |
+
|
96 |
+
@torch.no_grad()
|
97 |
+
def predict_deit(self, image):
|
98 |
+
if not self.models_loaded:
|
99 |
+
return {"error": "Модели не загружены"}
|
100 |
+
|
101 |
+
inputs = transform_image(image)
|
102 |
+
with autocast():
|
103 |
+
outputs = self.deit(inputs).logits
|
104 |
+
probs = torch.nn.functional.softmax(outputs, dim=1)
|
105 |
+
|
106 |
+
return self._format_predictions(probs)
|
107 |
+
|
108 |
+
@torch.no_grad()
|
109 |
+
def predict_ensemble(self, image):
|
110 |
+
if not self.models_loaded:
|
111 |
+
return {"error": "Модели не загружены"}
|
112 |
+
|
113 |
+
inputs = transform_image(image)
|
114 |
+
with autocast():
|
115 |
+
# Get predictions from both models
|
116 |
+
eff_probs = torch.nn.functional.softmax(self.efficientnet(inputs), dim=1)
|
117 |
+
deit_probs = torch.nn.functional.softmax(self.deit(inputs).logits, dim=1)
|
118 |
+
|
119 |
+
# Ensemble prediction (average probabilities)
|
120 |
+
ensemble_probs = (eff_probs + deit_probs) / 2
|
121 |
+
|
122 |
+
return self._format_predictions(ensemble_probs)
|
123 |
+
|
124 |
+
def _format_predictions(self, probs):
|
125 |
+
top5_probs, top5_indices = torch.topk(probs, 5)
|
126 |
+
result = {}
|
127 |
+
for i in range(5):
|
128 |
+
idx = top5_indices[0][i].item()
|
129 |
+
label = label_mapping.get(idx, f"Класс {idx}")
|
130 |
+
result[label] = float(top5_probs[0][i].item() * 100)
|
131 |
+
return result
|
132 |
+
|
133 |
+
# Initialize model handler
|
134 |
+
model_handler = ModelHandler()
|
135 |
+
|
136 |
+
# Prediction functions
|
137 |
+
def predict_efficientnet(image):
|
138 |
+
if image is None:
|
139 |
+
return "⚠️ Загрузите изображение"
|
140 |
+
return model_handler.predict_efficientnet(image)
|
141 |
+
|
142 |
+
def predict_deit(image):
|
143 |
+
if image is None:
|
144 |
+
return "⚠️ Загрузите изображение"
|
145 |
+
return model_handler.predict_deit(image)
|
146 |
+
|
147 |
+
def predict_ensemble(image):
|
148 |
+
if image is None:
|
149 |
+
return "⚠️ Загрузите изображение"
|
150 |
+
return model_handler.predict_ensemble(image)
|
151 |
+
|
152 |
+
# Gradio Interface
|
153 |
+
def create_individual_tab(model_name, predict_fn):
|
154 |
+
with gr.Blocks():
|
155 |
+
with gr.Row():
|
156 |
+
with gr.Column(scale=1):
|
157 |
+
image_input = gr.Image(label="Загрузите изображение", type="pil")
|
158 |
+
predict_btn = gr.Button("Предсказать", variant="primary")
|
159 |
+
with gr.Column(scale=1):
|
160 |
+
result_output = gr.Label(label="Результаты")
|
161 |
+
|
162 |
+
predict_btn.click(
|
163 |
+
predict_fn,
|
164 |
+
inputs=image_input,
|
165 |
+
outputs=result_output
|
166 |
+
)
|
167 |
+
|
168 |
+
gr.Examples(
|
169 |
+
examples=["examples/akiec.jpg", "examples/bcc.jpg", "examples/df.jpg"],
|
170 |
+
inputs=image_input,
|
171 |
+
label="Примеры из ISIC"
|
172 |
+
)
|
173 |
+
|
174 |
+
# Create interface
|
175 |
+
interface = gr.TabbedInterface(
|
176 |
+
interface_list=[
|
177 |
+
lambda: create_individual_tab("EfficientNet", predict_efficientnet),
|
178 |
+
lambda: create_individual_tab("DeiT", predict_deit),
|
179 |
+
lambda: create_individual_tab("Ансамблевая модель", predict_ensemble)
|
180 |
+
],
|
181 |
+
tab_names=[
|
182 |
+
"EfficientNet",
|
183 |
+
"DeiT",
|
184 |
+
"Ансамблевая модель"
|
185 |
+
],
|
186 |
+
title="DermVision Pro",
|
187 |
+
description="""
|
188 |
+
# Дерматологический классификатор
|
189 |
+
Выберите вкладку для использования соответствующей модели:
|
190 |
+
- EfficientNet: традиционная CNN модель
|
191 |
+
- DeiT: Vision Transformer
|
192 |
+
- Ансамблевая модель: комбинация CNN и Vision Transformer
|
193 |
+
""",
|
194 |
+
theme=gr.themes.Soft(),
|
195 |
+
css="""
|
196 |
+
.container {max-width: 1200px; margin: auto;}
|
197 |
+
.gr-button {font-size: 1.1em; padding: 8px 16px;}
|
198 |
+
.gr-textbox {font-size: 1.1em;}
|
199 |
+
.gr-column {min-width: 400px;}
|
200 |
+
"""
|
201 |
+
)
|
202 |
+
|
203 |
+
# Add startup check
|
204 |
+
def check_models():
|
205 |
+
if not model_handler.models_loaded:
|
206 |
+
return "⚠️ Предупреждение: Модели не загружены"
|
207 |
+
return "✅ Модели готовы к предсказанию"
|
208 |
+
|
209 |
+
startup_status = check_models()
|
210 |
+
print(startup_status)
|
211 |
+
|
212 |
+
if __name__ == "__main__":
|
213 |
+
print("🚀 Запуск интерфейса...")
|
214 |
+
interface.launch()
|