Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import torch
|
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
5 |
from torchvision import models
|
|
|
6 |
from transformers import ViTForImageClassification
|
7 |
from torch import nn
|
8 |
from torch.cuda.amp import autocast
|
@@ -24,7 +25,7 @@ label_mapping = {
|
|
24 |
}
|
25 |
|
26 |
# Model paths
|
27 |
-
CHECKPOINTS_PATH = os.getenv("CHECKPOINTS_PATH", "./")
|
28 |
|
29 |
# Model definitions
|
30 |
def get_efficientnet():
|
@@ -60,7 +61,7 @@ class ModelHandler:
|
|
60 |
self.deit = None
|
61 |
self.models_loaded = False
|
62 |
self.load_models()
|
63 |
-
|
64 |
def load_models(self):
|
65 |
try:
|
66 |
# Load EfficientNet
|
@@ -68,59 +69,56 @@ class ModelHandler:
|
|
68 |
efficientnet_path = os.path.join(CHECKPOINTS_PATH, "efficientnet_best.pth")
|
69 |
self.efficientnet.load_state_dict(torch.load(efficientnet_path, map_location=device))
|
70 |
self.efficientnet.eval()
|
71 |
-
|
72 |
# Load DeiT
|
73 |
self.deit = get_deit()
|
74 |
deit_path = os.path.join(CHECKPOINTS_PATH, "deit_best.pth")
|
75 |
self.deit.load_state_dict(torch.load(deit_path, map_location=device))
|
76 |
self.deit.eval()
|
77 |
-
|
78 |
self.models_loaded = True
|
79 |
print("✅ Models loaded successfully")
|
80 |
except Exception as e:
|
81 |
print(f"❌ Error loading models: {str(e)}")
|
82 |
self.models_loaded = False
|
83 |
-
|
84 |
@torch.no_grad()
|
85 |
def predict_efficientnet(self, image):
|
86 |
if not self.models_loaded:
|
87 |
return {"error": "Модели не загружены"}
|
88 |
-
|
89 |
inputs = transform_image(image)
|
90 |
with autocast():
|
91 |
outputs = self.efficientnet(inputs)
|
92 |
probs = torch.nn.functional.softmax(outputs, dim=1)
|
93 |
-
|
94 |
return self._format_predictions(probs)
|
95 |
|
96 |
@torch.no_grad()
|
97 |
def predict_deit(self, image):
|
98 |
if not self.models_loaded:
|
99 |
return {"error": "Модели не загружены"}
|
100 |
-
|
101 |
inputs = transform_image(image)
|
102 |
with autocast():
|
103 |
outputs = self.deit(inputs).logits
|
104 |
probs = torch.nn.functional.softmax(outputs, dim=1)
|
105 |
-
|
106 |
return self._format_predictions(probs)
|
107 |
-
|
108 |
@torch.no_grad()
|
109 |
def predict_ensemble(self, image):
|
110 |
if not self.models_loaded:
|
111 |
return {"error": "Модели не загружены"}
|
112 |
-
|
113 |
inputs = transform_image(image)
|
114 |
with autocast():
|
115 |
-
# Get predictions from both models
|
116 |
eff_probs = torch.nn.functional.softmax(self.efficientnet(inputs), dim=1)
|
117 |
deit_probs = torch.nn.functional.softmax(self.deit(inputs).logits, dim=1)
|
118 |
-
|
119 |
-
# Ensemble prediction (average probabilities)
|
120 |
ensemble_probs = (eff_probs + deit_probs) / 2
|
121 |
-
|
122 |
return self._format_predictions(ensemble_probs)
|
123 |
-
|
124 |
def _format_predictions(self, probs):
|
125 |
top5_probs, top5_indices = torch.topk(probs, 5)
|
126 |
result = {}
|
@@ -133,7 +131,7 @@ class ModelHandler:
|
|
133 |
# Initialize model handler
|
134 |
model_handler = ModelHandler()
|
135 |
|
136 |
-
# Prediction
|
137 |
def predict_efficientnet(image):
|
138 |
if image is None:
|
139 |
return "⚠️ Загрузите изображение"
|
@@ -149,51 +147,39 @@ def predict_ensemble(image):
|
|
149 |
return "⚠️ Загрузите изображение"
|
150 |
return model_handler.predict_ensemble(image)
|
151 |
|
152 |
-
# Gradio
|
153 |
-
def
|
154 |
-
with gr.Blocks():
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
"Ансамблевая модель"
|
185 |
-
]
|
186 |
-
)
|
187 |
-
|
188 |
-
# Add startup check
|
189 |
-
def check_models():
|
190 |
-
if not model_handler.models_loaded:
|
191 |
-
return "⚠️ Предупреждение: Модели не загружены"
|
192 |
-
return "✅ Модели готовы к предсказанию"
|
193 |
-
|
194 |
-
startup_status = check_models()
|
195 |
-
print(startup_status)
|
196 |
-
|
197 |
if __name__ == "__main__":
|
|
|
198 |
print("🚀 Запуск интерфейса...")
|
199 |
-
interface.launch()
|
|
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
5 |
from torchvision import models
|
6 |
+
from torchvision import transforms
|
7 |
from transformers import ViTForImageClassification
|
8 |
from torch import nn
|
9 |
from torch.cuda.amp import autocast
|
|
|
25 |
}
|
26 |
|
27 |
# Model paths
|
28 |
+
CHECKPOINTS_PATH = os.getenv("CHECKPOINTS_PATH", "./checkpoints")
|
29 |
|
30 |
# Model definitions
|
31 |
def get_efficientnet():
|
|
|
61 |
self.deit = None
|
62 |
self.models_loaded = False
|
63 |
self.load_models()
|
64 |
+
|
65 |
def load_models(self):
|
66 |
try:
|
67 |
# Load EfficientNet
|
|
|
69 |
efficientnet_path = os.path.join(CHECKPOINTS_PATH, "efficientnet_best.pth")
|
70 |
self.efficientnet.load_state_dict(torch.load(efficientnet_path, map_location=device))
|
71 |
self.efficientnet.eval()
|
72 |
+
|
73 |
# Load DeiT
|
74 |
self.deit = get_deit()
|
75 |
deit_path = os.path.join(CHECKPOINTS_PATH, "deit_best.pth")
|
76 |
self.deit.load_state_dict(torch.load(deit_path, map_location=device))
|
77 |
self.deit.eval()
|
78 |
+
|
79 |
self.models_loaded = True
|
80 |
print("✅ Models loaded successfully")
|
81 |
except Exception as e:
|
82 |
print(f"❌ Error loading models: {str(e)}")
|
83 |
self.models_loaded = False
|
84 |
+
|
85 |
@torch.no_grad()
|
86 |
def predict_efficientnet(self, image):
|
87 |
if not self.models_loaded:
|
88 |
return {"error": "Модели не загружены"}
|
89 |
+
|
90 |
inputs = transform_image(image)
|
91 |
with autocast():
|
92 |
outputs = self.efficientnet(inputs)
|
93 |
probs = torch.nn.functional.softmax(outputs, dim=1)
|
94 |
+
|
95 |
return self._format_predictions(probs)
|
96 |
|
97 |
@torch.no_grad()
|
98 |
def predict_deit(self, image):
|
99 |
if not self.models_loaded:
|
100 |
return {"error": "Модели не загружены"}
|
101 |
+
|
102 |
inputs = transform_image(image)
|
103 |
with autocast():
|
104 |
outputs = self.deit(inputs).logits
|
105 |
probs = torch.nn.functional.softmax(outputs, dim=1)
|
106 |
+
|
107 |
return self._format_predictions(probs)
|
108 |
+
|
109 |
@torch.no_grad()
|
110 |
def predict_ensemble(self, image):
|
111 |
if not self.models_loaded:
|
112 |
return {"error": "Модели не загружены"}
|
113 |
+
|
114 |
inputs = transform_image(image)
|
115 |
with autocast():
|
|
|
116 |
eff_probs = torch.nn.functional.softmax(self.efficientnet(inputs), dim=1)
|
117 |
deit_probs = torch.nn.functional.softmax(self.deit(inputs).logits, dim=1)
|
|
|
|
|
118 |
ensemble_probs = (eff_probs + deit_probs) / 2
|
119 |
+
|
120 |
return self._format_predictions(ensemble_probs)
|
121 |
+
|
122 |
def _format_predictions(self, probs):
|
123 |
top5_probs, top5_indices = torch.topk(probs, 5)
|
124 |
result = {}
|
|
|
131 |
# Initialize model handler
|
132 |
model_handler = ModelHandler()
|
133 |
|
134 |
+
# Prediction wrappers
|
135 |
def predict_efficientnet(image):
|
136 |
if image is None:
|
137 |
return "⚠️ Загрузите изображение"
|
|
|
147 |
return "⚠️ Загрузите изображение"
|
148 |
return model_handler.predict_ensemble(image)
|
149 |
|
150 |
+
# Create Gradio Blocks with Tabs
|
151 |
+
def create_interface():
|
152 |
+
with gr.Blocks() as demo:
|
153 |
+
gr.Markdown("# Диагностика кожных поражений (HAM10K)")
|
154 |
+
status = "✅ Модели готовы к предсказанию" if model_handler.models_loaded else "⚠️ Предупреждение: Модели не загружены"
|
155 |
+
gr.Markdown(f"**Состояние моделей:** {status}")
|
156 |
+
|
157 |
+
with gr.Tabs():
|
158 |
+
with gr.TabItem("EfficientNet"):
|
159 |
+
img = gr.Image(label="Загрузите изображение", type="pil")
|
160 |
+
btn = gr.Button("Предсказать", variant="primary")
|
161 |
+
out = gr.Label(label="Результаты")
|
162 |
+
btn.click(predict_efficientnet, inputs=img, outputs=out)
|
163 |
+
gr.Examples(examples=["examples/akiec.jpg", "examples/bcc.jpg", "examples/df.jpg"], inputs=img)
|
164 |
+
|
165 |
+
with gr.TabItem("DeiT"):
|
166 |
+
img = gr.Image(label="Загрузите изображение", type="pil")
|
167 |
+
btn = gr.Button("Предсказать", variant="primary")
|
168 |
+
out = gr.Label(label="Результаты")
|
169 |
+
btn.click(predict_deit, inputs=img, outputs=out)
|
170 |
+
gr.Examples(examples=["examples/akiec.jpg", "examples/bcc.jpg", "examples/df.jpg"], inputs=img)
|
171 |
+
|
172 |
+
with gr.TabItem("Ансамблевая модель"):
|
173 |
+
img = gr.Image(label="Загрузите изображение", type="pil")
|
174 |
+
btn = gr.Button("Предсказать", variant="primary")
|
175 |
+
out = gr.Label(label="Результаты")
|
176 |
+
btn.click(predict_ensemble, inputs=img, outputs=out)
|
177 |
+
gr.Examples(examples=["examples/akiec.jpg", "examples/bcc.jpg", "examples/df.jpg"], inputs=img)
|
178 |
+
|
179 |
+
return demo
|
180 |
+
|
181 |
+
# Launch interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
if __name__ == "__main__":
|
183 |
+
interface = create_interface()
|
184 |
print("🚀 Запуск интерфейса...")
|
185 |
+
interface.launch(share=True)
|