Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,79 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import soundfile as sf
|
4 |
+
|
5 |
+
# DeepFilterNet2
|
6 |
+
from df.enhance import enhance, init_df
|
7 |
+
|
8 |
+
APP_TITLE = "Zack’s Audio Outpost — Voice Denoiser (DeepFilterNet2)"
|
9 |
+
APP_DESC = (
|
10 |
+
"Upload a voice clip with traffic/hiss/room noise and compare Original vs Processed. "
|
11 |
+
"Choose Light / Medium / Strong (1× / 2× / 3× passes)."
|
12 |
+
)
|
13 |
+
|
14 |
+
# Load DFN2 once (first run can take a few minutes while the Space installs packages)
|
15 |
+
MODEL_DF, DF_STATE, _ = init_df()
|
16 |
+
|
17 |
+
def _ensure_2d(x: np.ndarray) -> np.ndarray:
|
18 |
+
"""Make shape (samples, channels)."""
|
19 |
+
if x.ndim == 1:
|
20 |
+
x = x[:, None]
|
21 |
+
return x
|
22 |
+
|
23 |
+
def _run_single_pass(stereo: np.ndarray) -> np.ndarray:
|
24 |
+
"""Run DFN2 per channel; keep same length/channels."""
|
25 |
+
out = np.zeros_like(stereo, dtype=np.float32)
|
26 |
+
for ch in range(stereo.shape[1]):
|
27 |
+
y = enhance(stereo[:, ch].astype(np.float32),
|
28 |
+
DF_STATE, model=MODEL_DF, atten_lim_db=12.0)
|
29 |
+
out[:len(y), ch] = y[:stereo.shape[0]]
|
30 |
+
return out
|
31 |
+
|
32 |
+
def process(file_obj, strength):
|
33 |
+
if file_obj is None:
|
34 |
+
raise gr.Error("Please upload an audio file first.")
|
35 |
+
|
36 |
+
# Load original audio (mono or stereo)
|
37 |
+
audio, sr = sf.read(file_obj.name, always_2d=False)
|
38 |
+
x = _ensure_2d(audio.astype(np.float32))
|
39 |
+
|
40 |
+
# Map UI strength to number of passes
|
41 |
+
passes = {"Light": 1, "Medium": 2, "Strong": 3}[strength]
|
42 |
+
|
43 |
+
y = x.copy()
|
44 |
+
for _ in range(passes):
|
45 |
+
y = _run_single_pass(y)
|
46 |
+
|
47 |
+
# Avoid clipping if multi-pass pushed levels
|
48 |
+
y = np.clip(y, -1.0, 1.0)
|
49 |
+
|
50 |
+
# Gradio wants (sr, np.array). If mono, squeeze back to 1D
|
51 |
+
return (sr, audio), (sr, y.squeeze())
|
52 |
+
|
53 |
+
THEME = gr.themes.Soft(primary_hue="cyan", neutral_hue="slate").set(
|
54 |
+
body_background_fill="#0b1020",
|
55 |
+
body_text_color="#e6ecff",
|
56 |
+
block_background_fill="#121830",
|
57 |
+
block_border_color="#243154",
|
58 |
+
button_primary_background_fill="#3dd6ff",
|
59 |
+
button_primary_text_color="#001018",
|
60 |
+
input_background_fill="#0e1530",
|
61 |
+
input_border_color="#243154",
|
62 |
+
)
|
63 |
+
|
64 |
+
with gr.Blocks(title=APP_TITLE, theme=THEME) as demo:
|
65 |
+
gr.Markdown(f"## {APP_TITLE}\n{APP_DESC}")
|
66 |
+
with gr.Row():
|
67 |
+
file = gr.File(label="Upload audio", file_types=["audio"])
|
68 |
+
strength = gr.Radio(["Light","Medium","Strong"], value="Medium",
|
69 |
+
label="Noise reduction strength")
|
70 |
+
run = gr.Button("Process", variant="primary")
|
71 |
+
|
72 |
+
with gr.Row():
|
73 |
+
a_orig = gr.Audio(label="Original (A)", interactive=False)
|
74 |
+
a_proc = gr.Audio(label="Processed (B)", interactive=False)
|
75 |
+
|
76 |
+
run.click(process, inputs=[file, strength], outputs=[a_orig, a_proc])
|
77 |
+
|
78 |
+
if __name__ == "__main__":
|
79 |
+
demo.launch()
|