# 1. Импорт необходимых библиотек import gradio as gr from transformers import pipeline # 2. Загрузка двух нейросетей generator = pipeline("text2text-generation", model="google/flan-t5-small") translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ru-en") # 3. Создание функции для генерации ответа def generate_response(prompt, language, temperature, max_length, history): source_lang_code = "ru" if language == "ru" else "en" target_lang_code = "ru" if language == "ru" else "en" english_prompt = translator(prompt, src_lang=source_lang_code, tgt_lang="en")[0]['translation_text'] response_en = generator( english_prompt, max_length=max_length, num_return_sequences=1, do_sample=True, temperature=temperature, no_repeat_ngram_size=2 )[0]['generated_text'] final_response = translator(response_en, src_lang="en", tgt_lang=target_lang_code)[0]['translation_text'] history.append([prompt, final_response]) return history # 4. Создание веб-интерфейса with gr.Blocks(theme="soft", title="COLIN") as iface: gr.Markdown("