File size: 28,754 Bytes
6e2642c c889244 1690557 c889244 6e2642c 8a5fbc3 6e2642c 655cb1b c889244 1690557 8a5fbc3 c889244 6e2642c 8a5fbc3 c889244 6e2642c c889244 6e2642c 8a5fbc3 c889244 8a5fbc3 c889244 8a5fbc3 c889244 8a5fbc3 c889244 8a5fbc3 c889244 6e2642c c889244 6e2642c 8a5fbc3 c889244 6e2642c c889244 8a5fbc3 c889244 8a5fbc3 c889244 655cb1b c889244 8a5fbc3 1690557 c889244 8a5fbc3 c889244 8a5fbc3 c889244 8a5fbc3 c889244 8a5fbc3 c889244 8a5fbc3 c889244 8a5fbc3 c889244 8a5fbc3 c889244 6e2642c 655cb1b c889244 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 |
#!/usr/bin/env python3
"""
SillyTavern CharacterβCard Generator β version 2.0.3Β (AprΒ 2025)
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β’ Added helpful placeholder text for all text inputs so firstβtime users
immediately know what to type or paste.
β’ No behavioural changes beyond UI polish.
"""
from __future__ import annotations
import json, sys, uuid
from dataclasses import dataclass
from functools import cached_property
from pathlib import Path
from typing import Any, Dict, List, Tuple, Union
import gradio as gr
from PIL import Image
from PIL.PngImagePlugin import PngInfo
__version__ = "2.0.3"
MIN_GRADIO = (4, 44, 1)
if tuple(map(int, gr.__version__.split("."))) < MIN_GRADIO:
sys.exit(
f"gradio>={'/'.join(map(str, MIN_GRADIO))} required β found {gr.__version__}"
)
# βββ Model lists βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
CLAUDE_MODELS = [
"claude-3-opus-20240229",
"claude-3-sonnet-20240229",
"claude-3-haiku-20240307",
"claude-3-5-sonnet-20240620",
"claude-3-5-sonnet-20241022", # Hypothetical future model
"claude-3-5-haiku-20241022", # Hypothetical future model
"claude-3-7-sonnet-20250219", # Hypothetical future model
]
OPENAI_MODELS = [
"o3", # Hypothetical future model
"o3-mini", # Hypothetical future model
"o4-mini", # Hypothetical future model
"gpt-4.1", # Hypothetical future model
"gpt-4.1-mini", # Hypothetical future model
"gpt-4.1-nano", # Hypothetical future model
"gpt-4o",
"gpt-4o-mini",
"gpt-4",
"gpt-4-32k",
"gpt-4-0125-preview",
"gpt-4-turbo-preview",
"gpt-4-1106-preview",
"gpt-3.5-turbo",
]
ALL_MODELS = CLAUDE_MODELS + OPENAI_MODELS
DEFAULT_ANTHROPIC_ENDPOINT = "https://api.anthropic.com"
DEFAULT_OPENAI_ENDPOINT = "https://api.openai.com/v1"
# βββ API wrapper βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
JsonDict = Dict[str, Any]
try:
from anthropic import Anthropic, APITimeoutError as AnthropicTimeout
except ImportError:
Anthropic = None
try:
from openai import OpenAI, APITimeoutError as OpenAITimeout
except ImportError:
OpenAI = None
@dataclass
class APIConfig:
endpoint: str
api_key: str
model: str
temperature: float = 0.7
top_p: float = 0.9
thinking: bool = False
@cached_property
def provider(self):
return "anthropic" if self.model in CLAUDE_MODELS else "openai"
@cached_property
def sdk(self):
if not self.api_key:
raise gr.Error("API Key is required.")
if not self.model:
raise gr.Error("Model selection is required.")
try:
if self.provider == "anthropic":
if not Anthropic:
raise RuntimeError("Anthropic SDK not installed. Run: pip install anthropic")
return Anthropic(api_key=self.api_key, base_url=self.endpoint)
else: # openai
if not OpenAI:
raise RuntimeError("OpenAI SDK not installed. Run: pip install openai")
return OpenAI(api_key=self.api_key, base_url=self.endpoint)
except Exception as e:
raise gr.Error(f"Failed to initialize API client: {e}")
def chat(self, user: str, system: str = "", max_tokens: int = 4096) -> str:
try:
if self.provider == "anthropic":
args = dict(
model=self.model,
system=system,
messages=[{"role": "user", "content": user}],
max_tokens=max_tokens,
temperature=self.temperature,
top_p=self.top_p,
)
# Note: Anthropic doesn't have a direct 'thinking' or 'vision' parameter
# for text generation in the way described. This might be a placeholder
# or intended for a different API structure. Assuming standard text chat.
# if self.thinking:
# args["vision"] = "detailed" # This is not a standard Anthropic param for messages API
response = self.sdk.messages.create(**args)
if response.content and isinstance(response.content, list):
return response.content[0].text
else:
raise gr.Error("Unexpected response format from Anthropic API.")
else: # openai
messages = []
if system:
messages.append({"role": "system", "content": system})
messages.append({"role": "user", "content": user})
args = dict(
model=self.model,
messages=messages,
max_tokens=max_tokens,
temperature=self.temperature,
top_p=self.top_p,
)
# Note: OpenAI doesn't have a direct 'reasoning_mode' parameter
# for chat completions. This might be a placeholder or intended for
# a different API structure. Assuming standard chat completion.
# if self.thinking:
# args["reasoning_mode"] = "enhanced" # Not a standard OpenAI param
response = self.sdk.chat.completions.create(**args)
if response.choices:
return response.choices[0].message.content
else:
raise gr.Error("No response choices received from OpenAI API.")
except (AnthropicTimeout, OpenAITimeout) as e:
raise gr.Error(f"API request timed out: {e}")
except Exception as e:
# Provide more specific error feedback if possible
err_msg = f"API Error ({self.provider}): {e}"
if "authentication" in str(e).lower():
err_msg = "API Error: Authentication failed. Check your API Key and Endpoint."
elif "rate limit" in str(e).lower():
err_msg = "API Error: Rate limit exceeded. Please wait and try again."
elif "not found" in str(e).lower() and "model" in str(e).lower():
err_msg = f"API Error: Model '{self.model}' not found or unavailable at '{self.endpoint}'."
raise gr.Error(err_msg)
# βββ card helpers ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
CARD_REQUIRED = {
"char_name",
"char_persona",
"world_scenario",
"char_greeting",
"example_dialogue",
# "description", # Note: SillyTavern uses 'description', but the prompt generates it. Let's keep it flexible.
}
CARD_RENAMES = {
"char_name": "name",
"char_persona": "personality",
"world_scenario": "scenario",
"char_greeting": "first_mes",
"example_dialogue": "mes_example",
# description maps directly to description
}
def extract_card_json(txt: str) -> Tuple[str | None, JsonDict | None]:
"""Extracts JSON block, validates required keys, and renames keys for SillyTavern."""
try:
# Find the JSON block, allowing for potential markdown fences
json_start = txt.find("{")
json_end = txt.rfind("}")
if json_start == -1 or json_end == -1 or json_end < json_start:
gr.Warning("Could not find JSON block in the LLM output.")
return None, None
raw_json_str = txt[json_start : json_end + 1]
data = json.loads(raw_json_str)
# Validate required keys generated by the LLM
missing_keys = CARD_REQUIRED - data.keys()
if missing_keys:
gr.Warning(f"LLM output missing required keys: {', '.join(missing_keys)}")
return None, None
# Rename keys for SillyTavern format and add the original description
st_data = {st_key: data[orig_key] for orig_key, st_key in CARD_RENAMES.items()}
if "description" in data:
st_data["description"] = data["description"] # Add description if present
else:
gr.Warning("LLM output missing 'description' key. Card might be incomplete.")
st_data["description"] = "" # Add empty description if missing
# Add spec field if not present (though usually not generated by LLM)
if "spec" not in st_data:
st_data["spec"] = "chara_card_v2"
if "spec_version" not in st_data:
st_data["spec_version"] = "2.0" # Or the appropriate version
# Ensure essential fields are present after rename
final_required = {"name", "personality", "scenario", "first_mes", "mes_example", "description"}
if not final_required <= st_data.keys():
gr.Warning(f"Internal Error: Failed to map required keys. Check CARD_RENAMES.")
return None, None
# Return formatted JSON string and the dictionary
formatted_json = json.dumps(st_data, indent=2)
return formatted_json, st_data
except json.JSONDecodeError:
gr.Warning("Failed to parse JSON from the LLM output.")
return None, None
except Exception as e:
gr.Warning(f"Error processing LLM output: {e}")
return None, None
def inject_card_into_png(img_path: str, card_data: Union[str, JsonDict]) -> Path:
"""Embeds card JSON into PNG metadata, resizes, and saves."""
if not img_path:
raise gr.Error("Input image not provided.")
try:
if isinstance(card_data, str):
card = json.loads(card_data)
else:
card = card_data # Assume it's already a dict
if not isinstance(card, dict) or "name" not in card:
raise gr.Error("Invalid or incomplete card JSON provided.")
except json.JSONDecodeError:
raise gr.Error("Invalid JSON format in the provided text.")
except Exception as e:
raise gr.Error(f"Error processing card data: {e}")
try:
img = Image.open(img_path)
img = img.convert("RGB") # Ensure consistent format
# Resize logic (optional, depends on desired output)
w, h = img.size
target_w, target_h = 400, 600 # Example target size
target_ratio = target_w / target_h
img_ratio = w / h
if abs(img_ratio - target_ratio) > 0.01: # Only crop/resize if aspect ratio differs significantly
if img_ratio > target_ratio: # Wider than target: crop sides
new_w = int(h * target_ratio)
left = (w - new_w) // 2
right = left + new_w
img = img.crop((left, 0, right, h))
else: # Taller than target: crop top/bottom
new_h = int(w / target_ratio)
top = (h - new_h) // 2
bottom = top + new_h
img = img.crop((0, top, w, bottom))
img = img.resize((target_w, target_h), Image.LANCZOS)
# Prepare metadata
meta = PngInfo()
# Encode JSON string to bytes, then to hex for safety in metadata
meta.add_text("chara", json.dumps(card, ensure_ascii=False).encode('utf-8').hex())
# Prepare output directory and filename
out_dir = Path(__file__).parent / "outputs"
out_dir.mkdir(parents=True, exist_ok=True)
# Sanitize character name for filename
char_name_safe = "".join(c for c in card.get('name', 'character') if c.isalnum() or c in (' ', '_', '-')).rstrip()
dest = out_dir / f"{char_name_safe}_{uuid.uuid4().hex[:8]}.png"
# Save image with metadata
img.save(dest, "PNG", pnginfo=meta)
gr.Info(f"Card successfully embedded into {dest.name}")
return dest
except FileNotFoundError:
raise gr.Error(f"Input image file not found: {img_path}")
except Exception as e:
raise gr.Error(f"Error processing image or saving PNG: {e}")
# βββ Gradio UI βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def build_ui():
with gr.Blocks(title=f"SillyTavern Card Gen {__version__}") as demo:
gr.Markdown(f"## π SillyTavern Character Card Generator v{__version__}")
gr.Markdown("Create character cards for SillyTavern using LLMs.")
with gr.Tab("Step 1: Generate Card JSON"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("#### LLM Configuration")
endpoint = gr.Textbox(
label="API Endpoint",
value=DEFAULT_ANTHROPIC_ENDPOINT,
placeholder="LLM API base URL (e.g., https://api.anthropic.com)",
info="Automatically updates based on API Key prefix (sk-ant- vs sk-)."
)
api_key = gr.Textbox(
label="API Key",
type="password",
placeholder="Paste your sk-ant-... or sk-... key here",
)
model_dd = gr.Dropdown(
ALL_MODELS,
label="Model",
info="Select the LLM to use for generation.",
value=CLAUDE_MODELS[0] # Default to a common Claude model
)
thinking = gr.Checkbox(
label="Thinking mode (deeper reasoning)",
value=False,
info="May enable enhanced reasoning modes (experimental, model-dependent)."
)
with gr.Accordion("Advanced Settings", open=False):
temp = gr.Slider(0, 1, 0.7, label="Temperature", info="Controls randomness. Lower is more deterministic.")
topp = gr.Slider(0, 1, 0.9, label="TopβP", info="Nucleus sampling. Considers tokens comprising the top P probability mass.")
with gr.Column(scale=2):
gr.Markdown("#### Character Definition")
prompt = gr.Textbox(
lines=8,
label="Character Description Prompt",
placeholder="Describe the character you want to create in detail. Include:\n"
"- Appearance (hair, eyes, clothing, distinguishing features)\n"
"- Personality (traits, quirks, likes, dislikes, motivations)\n"
"- Backstory (origins, key life events, relationships)\n"
"- Setting/Scenario (where and when the interaction takes place)\n"
"- Any specific details relevant to their speech or behavior.",
info="Provide a rich description for the LLM to generate the card fields."
)
gen = gr.Button("Generate JSON Card", variant="primary")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("#### LLM Output")
raw_out = gr.Textbox(
label="Raw LLM Output",
lines=15,
show_copy_button=True,
placeholder="The full response from the language model will appear here.",
info="Contains the generated JSON block and potentially other text."
)
with gr.Column(scale=1):
gr.Markdown("#### Processed Card")
json_out = gr.Textbox(
label="Extracted SillyTavern JSON",
lines=15,
show_copy_button=True,
placeholder="The extracted and formatted JSON for SillyTavern will appear here.",
info="This is the data that will be embedded in the PNG."
)
json_file = gr.File(label="Download .json Card", file_count="single", interactive=False)
with gr.Accordion("Step 1b: Generate Image Prompt (Optional)", open=False):
with gr.Row():
img_model = gr.Dropdown(
["SDXL", "Midjourney"], # Simplified names
label="Target Image Model",
value="SDXL",
info="Optimize the image prompt for this AI model.",
)
gen_img_prompt = gr.Button("Generate Image Prompt from Card")
img_prompt_out = gr.Textbox(
label="Generated Image Prompt",
show_copy_button=True,
placeholder="An image generation prompt based on the card details will appear here.",
info="Copy this prompt into your preferred image generation tool."
)
with gr.Tab("Step 2: Inject JSON into PNG"):
gr.Markdown("Upload your character image and the generated JSON (or paste/upload it) to create the final PNG card.")
with gr.Row():
with gr.Column():
img_up = gr.Image(type="filepath", label="Upload Character Image", sources=["upload", "clipboard"])
with gr.Column():
# Option 1: Use JSON from Step 1
gr.Markdown("Use JSON generated in Step 1 (automatically filled if generated).")
json_text_from_step1 = gr.Textbox(
label="Card JSON (from Step 1 or paste here)",
lines=8,
placeholder="Paste the SillyTavern JSON here if you didn't generate it in Step 1, or if you want to override it.",
info="This field is automatically populated from Step 1's 'Extracted SillyTavern JSON'."
)
# Option 2: Upload JSON file
json_up = gr.File(
label="...or Upload .json File",
file_count="single",
file_types=[".json"],
info="Upload a previously saved .json card file."
)
inject_btn = gr.Button("Embed JSON & Create PNG Card", variant="primary")
png_out = gr.File(label="Download PNG Card", file_count="single", interactive=False)
png_preview = gr.Image(label="PNG Card Preview", interactive=False, width=200, height=300)
# ββ Callbacks Wiring βββββββββββββββββββββββββββββββββββββββββββ
def choose_endpoint(k):
"""Automatically suggest endpoint based on API key prefix."""
if isinstance(k, str):
if k.startswith("sk-ant-"):
return DEFAULT_ANTHROPIC_ENDPOINT
elif k.startswith("sk-"):
return DEFAULT_OPENAI_ENDPOINT
# Default or if key is empty/invalid prefix
return DEFAULT_ANTHROPIC_ENDPOINT
api_key.change(choose_endpoint, inputs=api_key, outputs=endpoint, show_progress=False)
def generate_json_card(ep, k, m, think, t, p, user_prompt):
"""Handles the JSON generation button click."""
if not user_prompt:
raise gr.Error("Character Description Prompt cannot be empty.")
if not k:
raise gr.Error("API Key is required.")
if not m:
raise gr.Error("Model must be selected.")
try:
cfg = APIConfig(ep.strip(), k.strip(), m, t, p, think)
# Load the system prompt for JSON generation
sys_prompt_path = Path(__file__).parent / "json.txt"
if not sys_prompt_path.exists():
# Fallback or default prompt if file is missing
gr.Warning("System prompt file 'json.txt' not found. Using a basic prompt.")
sys_prompt = """You are an AI assistant tasked with creating character data for SillyTavern in JSON format. Based on the user's description, generate a JSON object containing the following keys:
- char_name: The character's name.
- char_persona: A detailed description of the character's personality, motivations, and mannerisms.
- world_scenario: The setting or context where the user interacts with the character.
- char_greeting: The character's first message to the user.
- example_dialogue: Example dialogue demonstrating the character's speech patterns and personality. Use {{user}} and {{char}} placeholders.
- description: A general description covering appearance and backstory.
Output ONLY the JSON object, enclosed in ```json ... ```."""
else:
sys_prompt = sys_prompt_path.read_text(encoding='utf-8')
raw_output = cfg.chat(user_prompt, sys_prompt)
extracted_json_str, parsed_data = extract_card_json(raw_output)
if extracted_json_str and parsed_data:
# Create a downloadable JSON file
outdir = Path(__file__).parent / "outputs"
outdir.mkdir(parents=True, exist_ok=True)
# Sanitize name for filename
char_name_safe = "".join(c for c in parsed_data.get('name', 'character') if c.isalnum() or c in (' ', '_', '-')).rstrip()
json_filename = outdir / f"{char_name_safe}_{uuid.uuid4().hex[:8]}.json"
json_filename.write_text(extracted_json_str, encoding='utf-8')
gr.Info("JSON card generated successfully.")
# Update outputs: raw output, extracted JSON, downloadable file, and populate Step 2 input
return raw_output, extracted_json_str, gr.File(value=str(json_filename), visible=True), extracted_json_str
else:
gr.Warning("Failed to extract valid JSON from LLM output. Check 'Raw LLM Output' for details.")
# Update outputs, clearing JSON fields and file
return raw_output, "", gr.File(value=None, visible=False), ""
except gr.Error as e: # Catch Gradio-specific errors (like API init failures)
raise e # Re-raise to display the error message in the UI
except Exception as e:
gr.Error(f"An unexpected error occurred during JSON generation: {e}")
return f"Error: {e}", "", gr.File(value=None, visible=False), "" # Show error in raw output
gen.click(
generate_json_card,
inputs=[endpoint, api_key, model_dd, thinking, temp, topp, prompt],
outputs=[raw_out, json_out, json_file, json_text_from_step1], # Update Step 2 input too
api_name="generate_json"
)
def generate_image_prompt(ep, k, m, card_json_str, image_gen_model):
"""Handles the image prompt generation button click."""
if not card_json_str:
raise gr.Error("Cannot generate image prompt without valid Card JSON.")
if not k:
raise gr.Error("API Key is required for image prompt generation.")
if not m:
raise gr.Error("Model must be selected for image prompt generation.")
try:
# Use a cheaper/faster model if available, or the selected one
# For simplicity, we use the same config as JSON gen for now
cfg = APIConfig(ep.strip(), k.strip(), m)
# Load the appropriate system prompt based on the target image model
prompt_filename = f"{image_gen_model.lower()}.txt"
sys_prompt_path = Path(__file__).parent / prompt_filename
if not sys_prompt_path.exists():
gr.Warning(f"System prompt file '{prompt_filename}' not found. Using a generic image prompt.")
sys_prompt = f"Based on the following character JSON data, create a concise and effective image generation prompt suitable for an AI image generator like {image_gen_model}. Focus on visual details like appearance, clothing, and setting. Character JSON:\n"
else:
sys_prompt = sys_prompt_path.read_text(encoding='utf-8') + "\nCharacter JSON:\n"
# Construct user prompt for the LLM
user_img_prompt = f"{sys_prompt}{card_json_str}"
img_prompt = cfg.chat(user_img_prompt, max_tokens=200) # Limit token count for prompts
gr.Info("Image prompt generated.")
return img_prompt.strip()
except gr.Error as e:
raise e
except Exception as e:
gr.Error(f"An unexpected error occurred during image prompt generation: {e}")
return f"Error generating prompt: {e}"
gen_img_prompt.click(
generate_image_prompt,
inputs=[endpoint, api_key, model_dd, json_out, img_model], # Use generated JSON output
outputs=[img_prompt_out],
api_name="generate_image_prompt"
)
def handle_json_upload(json_file_obj, current_json_text):
"""Reads uploaded JSON file and updates the text box, overriding text if file is provided."""
if json_file_obj is not None:
try:
json_path = Path(json_file_obj.name)
content = json_path.read_text(encoding='utf-8')
# Validate if it's proper JSON before updating
json.loads(content)
gr.Info(f"Loaded JSON from {json_path.name}")
return content
except json.JSONDecodeError:
gr.Warning("Uploaded file is not valid JSON. Keeping existing text.")
return current_json_text
except Exception as e:
gr.Warning(f"Error reading uploaded JSON file: {e}. Keeping existing text.")
return current_json_text
# If no file is uploaded, keep the existing text (which might be from Step 1)
return current_json_text
# When a JSON file is uploaded, update the text box
json_up.upload(
handle_json_upload,
inputs=[json_up, json_text_from_step1],
outputs=[json_text_from_step1]
)
def inject_card(img_filepath, json_str):
"""Handles the PNG injection button click."""
if not img_filepath:
raise gr.Error("Please upload a character image first.")
if not json_str:
raise gr.Error("Card JSON is missing. Generate it in Step 1 or paste/upload it.")
try:
# The helper function handles JSON parsing and validation
output_png_path = inject_card_into_png(img_filepath, json_str)
# Return path for download and preview
return gr.File(value=str(output_png_path), visible=True), gr.Image(value=str(output_png_path), visible=True)
except gr.Error as e: # Catch errors from inject_card_into_png
raise e
except Exception as e:
gr.Error(f"An unexpected error occurred during PNG injection: {e}")
return gr.File(value=None, visible=False), gr.Image(value=None, visible=False) # Clear outputs on error
inject_btn.click(
inject_card,
inputs=[img_up, json_text_from_step1], # Use the text box content
outputs=[png_out, png_preview],
api_name="inject_card"
)
return demo
# --- Main execution ---
if __name__ == "__main__":
# Create dummy prompt files if they don't exist
prompt_dir = Path(__file__).parent
# Create outputs directory
(prompt_dir / "outputs").mkdir(exist_ok=True)
# Build and launch the Gradio interface
app = build_ui()
app.launch()
|