File size: 6,508 Bytes
7c43635
 
 
9912372
7c43635
 
 
9912372
7c43635
 
 
7e08bc6
7c43635
9912372
7c43635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e08bc6
7c43635
 
 
 
 
 
 
 
 
 
7e08bc6
7c43635
 
 
 
 
 
 
 
 
7e08bc6
7c43635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e08bc6
7c43635
 
 
 
 
 
 
 
 
 
 
7e08bc6
7c43635
7e08bc6
7c43635
 
 
 
 
 
 
 
 
 
 
 
9912372
 
 
 
7c43635
 
9912372
7c43635
 
 
 
a2fe2e6
 
 
 
 
 
 
 
 
 
7e08bc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2fe2e6
 
 
 
 
 
 
7e08bc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2fe2e6
 
 
 
 
 
7c43635
 
 
a2fe2e6
7c43635
 
 
 
7e08bc6
 
 
 
7c43635
7e08bc6
 
7c43635
 
 
 
 
9912372
7c43635
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import gradio as gr
import json
from graphviz import Digraph
import base64

def generate_concept_map(json_input: str) -> str:
    """
    Generate concept map from JSON and return as base64 image
    
    Args:
        json_input (str): JSON describing the concept map structure.
        
    Returns:
        str: Base64 data URL of the generated concept map
    """
    try:
        if not json_input.strip():
            return "Error: Empty input"
            
        data = json.loads(json_input)
        
        if 'central_node' not in data or 'nodes' not in data:
            raise ValueError("Missing required fields: central_node or nodes")

        # Create graph
        dot = Digraph(
            name='ConceptMap',
            format='png',
            graph_attr={
                'rankdir': 'TB',
                'splines': 'ortho',
                'bgcolor': 'transparent'
            }
        )
        
        # Central node (ellipse)
        dot.node(
            'central',
            data['central_node'],
            shape='ellipse',
            style='filled',
            fillcolor='#2196F3',
            fontcolor='white',
            fontsize='14'
        )
        
        # Process nodes (rectangles)
        for node in data['nodes']:
            node_id = node.get('id')
            label = node.get('label')
            relationship = node.get('relationship')
            
            # Validate node
            if not all([node_id, label, relationship]):
                raise ValueError(f"Invalid node: {node}")
                
            # Create main node (rectangle)
            dot.node(
                node_id,
                label,
                shape='box',
                style='filled',
                fillcolor='#4CAF50',
                fontcolor='white',
                fontsize='12'
            )
            
            # Connect to central node
            dot.edge(
                'central',
                node_id,
                label=relationship,
                color='#9C27B0',
                fontsize='10'
            )
            
            # Process subnodes (rectangles with lighter fill)
            for subnode in node.get('subnodes', []):
                sub_id = subnode.get('id')
                sub_label = subnode.get('label')
                sub_rel = subnode.get('relationship')
                
                if not all([sub_id, sub_label, sub_rel]):
                    raise ValueError(f"Invalid subnode: {subnode}")
                    
                dot.node(
                    sub_id,
                    sub_label,
                    shape='box',
                    style='filled',
                    fillcolor='#FFA726',
                    fontcolor='white',
                    fontsize='10'
                )
                
                dot.edge(
                    node_id,
                    sub_id,
                    label=sub_rel,
                    color='#E91E63',
                    fontsize='8'
                )

        # Convert to base64 image
        img_data = dot.pipe(format='png')
        img_base64 = base64.b64encode(img_data).decode()
        return f"data:image/png;base64,{img_base64}"

    except json.JSONDecodeError:
        return "Error: Invalid JSON format"
    except Exception as e:
        return f"Error: {str(e)}"

if __name__ == "__main__":
    # Sample JSON for placeholder
    sample_json = """
    {
      "central_node": "Artificial Intelligence (AI)",
      "nodes": [
        {
          "id": "ml",
          "label": "Machine Learning",
          "relationship": "core_component",
          "subnodes": [
            {
              "id": "sl",
              "label": "Supervised Learning",
              "relationship": "type_of",
              "subnodes": [
                {"id": "reg", "label": "Regression", "relationship": "technique"},
                {"id": "clf", "label": "Classification", "relationship": "technique"}
              ]
            },
            {
              "id": "ul",
              "label": "Unsupervised Learning",
              "relationship": "type_of",
              "subnodes": [
                {"id": "clus", "label": "Clustering", "relationship": "technique"},
                {"id": "dim", "label": "Dimensionality Reduction", "relationship": "technique"}
              ]
            }
          ]
        },
        {
          "id": "nlp",
          "label": "Natural Language Processing",
          "relationship": "application_area",
          "subnodes": [
            {
              "id": "sa",
              "label": "Sentiment Analysis",
              "relationship": "task",
              "subnodes": [
                {"id": "tc", "label": "Text Classification", "relationship": "method"},
                {"id": "absa", "label": "Aspect-Based Sentiment Analysis", "relationship": "method"}
              ]
            },
            {
              "id": "tr",
              "label": "Translation",
              "relationship": "task",
              "subnodes": [
                {"id": "nmt", "label": "Neural Machine Translation", "relationship": "method"},
                {"id": "rbt", "label": "Rule-Based Translation", "relationship": "method"}
              ]
            }
          ]
        },
        {
          "id": "cv",
          "label": "Computer Vision",
          "relationship": "application_area",
          "subnodes": [
            {
              "id": "od",
              "label": "Object Detection",
              "relationship": "task",
              "subnodes": [
                {"id": "yolo", "label": "YOLO", "relationship": "algorithm"},
                {"id": "rcnn", "label": "R-CNN", "relationship": "algorithm"}
              ]
            }
          ]
        }
      ]
    }
    """
    
    demo = gr.Interface(
        fn=generate_concept_map,
        inputs=gr.Textbox(
            value=sample_json,  # Pre-filled sample JSON
            placeholder="Paste structured JSON here...",
            label="JSON Input",
            lines=15
        ),
        outputs=gr.Image(
            label="Concept Map",
            type="filepath",
            interactive=False
        ),
        title="Advanced Concept Map Generator",
        description="Create complex concept maps from JSON with direct image output"
    )
    
    demo.launch(
        mcp_server=True,
        share=False,
        server_port=7860,
        server_name="0.0.0.0"
    )