File size: 1,233 Bytes
f7a736e
 
2fa9a9c
f7a736e
2fa9a9c
 
f7a736e
 
 
 
2fa9a9c
 
f7a736e
 
2fa9a9c
 
f7a736e
2fa9a9c
f7a736e
 
 
 
 
 
 
 
 
 
 
 
 
2fa9a9c
 
f7a736e
 
 
2fa9a9c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig

# Select the best distill model for Hugging Face Spaces
model_name = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

# Load model with quantization for optimized performance
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    quantization_config=quantization_config,
    device_map="auto",
    trust_remote_code=True
)

# Define the text generation function
def generate_response(prompt):
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    with torch.no_grad():
        output = model.generate(**inputs, max_length=150)
    return tokenizer.decode(output[0], skip_special_tokens=True)

# Set up Gradio UI
interface = gr.Interface(
    fn=generate_response,
    inputs=gr.Textbox(label="Enter your prompt"),
    outputs=gr.Textbox(label="AI Response"),
    title="DeepSeek-R1 Distilled LLaMA Chatbot",
    description="Enter a prompt and receive a response from DeepSeek-R1-Distill-Llama-8B."
)

# Launch the app
interface.launch()