Zakia's picture
Create app.py
f7a736e verified
raw
history blame
1.02 kB
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# Model name
model_name = "deepseek-ai/DeepSeek-R1"
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# Load model with quantization
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True
).to("cuda" if torch.cuda.is_available() else "cpu")
# Define the text generation function
def generate_response(prompt):
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
output = model.generate(**inputs, max_length=150)
return tokenizer.decode(output[0], skip_special_tokens=True)
# Set up Gradio UI
interface = gr.Interface(
fn=generate_response,
inputs=gr.Textbox(label="Enter your prompt"),
outputs=gr.Textbox(label="AI Response"),
title="DeepSeek-R1 Chatbot",
description="Enter a prompt and receive a response from DeepSeek-R1."
)
# Launch the app
interface.launch()