Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,50 @@
|
|
1 |
-
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel
|
3 |
-
from transformers import
|
|
|
|
|
4 |
|
5 |
-
# Initialize the FastAPI app
|
6 |
app = FastAPI()
|
7 |
|
8 |
-
#
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Define the request model
|
12 |
class URLRequest(BaseModel):
|
13 |
url: str
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
# Define the API endpoint for URL prediction
|
16 |
@app.post("/predict")
|
17 |
async def predict(url_request: URLRequest):
|
18 |
url_to_check = url_request.url
|
19 |
-
result =
|
20 |
return {"prediction": result}
|
21 |
|
22 |
# Health check endpoint
|
23 |
@app.get("/")
|
24 |
async def read_root():
|
25 |
return {"message": "API is up and running"}
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
|
|
|
7 |
app = FastAPI()
|
8 |
|
9 |
+
# Check if CUDA is available
|
10 |
+
if torch.cuda.is_available():
|
11 |
+
device = torch.device("cuda:0")
|
12 |
+
else:
|
13 |
+
device = torch.device("cpu")
|
14 |
+
|
15 |
+
# Load the tokenizer and model
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained("kmack/malicious-url-detection")
|
17 |
+
model = AutoModelForSequenceClassification.from_pretrained("kmack/malicious-url-detection")
|
18 |
+
model = model.to(device)
|
19 |
|
20 |
# Define the request model
|
21 |
class URLRequest(BaseModel):
|
22 |
url: str
|
23 |
|
24 |
+
# Prediction function
|
25 |
+
def get_prediction(input_text: str) -> dict:
|
26 |
+
label2id = model.config.label2id
|
27 |
+
inputs = tokenizer(input_text, return_tensors='pt', truncation=True)
|
28 |
+
inputs = inputs.to(device)
|
29 |
+
outputs = model(**inputs)
|
30 |
+
logits = outputs.logits
|
31 |
+
sigmoid = torch.nn.Sigmoid()
|
32 |
+
probs = sigmoid(logits.squeeze().cpu())
|
33 |
+
probs = probs.detach().numpy()
|
34 |
+
for i, k in enumerate(label2id.keys()):
|
35 |
+
label2id[k] = probs[i]
|
36 |
+
label2id = {k: float(v) for k, v in sorted(label2id.items(), key=lambda item: item[1].item(), reverse=True)}
|
37 |
+
return label2id
|
38 |
+
|
39 |
# Define the API endpoint for URL prediction
|
40 |
@app.post("/predict")
|
41 |
async def predict(url_request: URLRequest):
|
42 |
url_to_check = url_request.url
|
43 |
+
result = get_prediction(url_to_check)
|
44 |
return {"prediction": result}
|
45 |
|
46 |
# Health check endpoint
|
47 |
@app.get("/")
|
48 |
async def read_root():
|
49 |
return {"message": "API is up and running"}
|
50 |
+
|