import streamlit as st from transformers import pipeline # Load grammar correction model corrector = pipeline("text2text-generation", model="vennify/t5-base-grammar-correction") explainer = pipeline("text2text-generation", model="google/flan-t5-base") st.title("🧠 English Sentence Helper") st.write("Improve your grammar, get feedback, and learn from your mistakes.") user_input = st.text_area("✍️ Enter a sentence you want to check:") if st.button("Analyze"): if user_input: with st.spinner("Analyzing your sentence..."): corrected = corrector(user_input)[0]['generated_text'] explanation_prompt = f"Explain the grammatical errors in this sentence: {user_input}" improvement_prompt = f"Suggest improvements in grammar, vocabulary, or structure: {user_input}" explanation = explainer(explanation_prompt)[0]['generated_text'] improvements = explainer(improvement_prompt)[0]['generated_text'] st.success("✅ Analysis Complete!") st.markdown(f"**Original Sentence:** {user_input}") st.markdown(f"**Corrected Sentence:** {corrected}") st.markdown(f"**Grammar Explanation:** {explanation}") st.markdown(f"**Improvement Suggestions:** {improvements}") else: st.warning("Please enter a sentence.")