from transformers import pipeline import streamlit as st # Load grammar correction model @st.cache_resource def load_model(): return pipeline("text2text-generation", model="vennify/t5-base-grammar-correction") corrector = load_model() # Streamlit UI st.title("Grammar Correction Assistant") user_input = st.text_area("Enter a sentence to correct:", "She don't like going to the gym because it make her tired.") if st.button("Correct Sentence"): with st.spinner("Correcting..."): result = corrector(user_input, max_length=100, clean_up_tokenization_spaces=True) corrected_sentence = result[0]['generated_text'] st.markdown(f"**Corrected Sentence:** {corrected_sentence}")