Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
import pdfplumber
|
4 |
-
from concurrent.futures import ThreadPoolExecutor
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
from langchain.embeddings import HuggingFaceEmbeddings
|
7 |
from langchain.vectorstores import FAISS
|
@@ -18,76 +17,30 @@ def load_summarization_pipeline():
|
|
18 |
|
19 |
summarizer = load_summarization_pipeline()
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
chunks = text_splitter.split_text(text)
|
26 |
-
return chunks
|
27 |
-
|
28 |
-
# Initialize embedding function
|
29 |
-
embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
30 |
|
31 |
-
|
32 |
-
@st.cache_resource
|
33 |
-
def load_or_create_vector_store(text_chunks):
|
34 |
-
if not text_chunks:
|
35 |
-
st.error("No valid text chunks found to create a vector store. Please check your PDF files.")
|
36 |
-
return None
|
37 |
-
vector_store = FAISS.from_texts(text_chunks, embedding=embedding_function)
|
38 |
-
return vector_store
|
39 |
-
|
40 |
-
# Helper function to process a single PDF
|
41 |
-
def process_single_pdf(file_path):
|
42 |
-
text = ""
|
43 |
-
try:
|
44 |
with pdfplumber.open(file_path) as pdf:
|
45 |
for page in pdf.pages:
|
46 |
page_text = page.extract_text()
|
47 |
if page_text:
|
48 |
-
|
49 |
-
except Exception as e:
|
50 |
-
st.error(f"Failed to read PDF: {file_path} - {e}")
|
51 |
-
return text
|
52 |
-
|
53 |
-
# Function to load PDFs with progress display
|
54 |
-
def load_pdfs_with_progress(folder_path):
|
55 |
-
all_text = ""
|
56 |
-
pdf_files = [os.path.join(folder_path, filename) for filename in os.listdir(folder_path) if filename.endswith('.pdf')]
|
57 |
-
num_files = len(pdf_files)
|
58 |
-
|
59 |
-
if num_files == 0:
|
60 |
-
st.error("No PDF files found in the specified folder.")
|
61 |
-
st.session_state['vector_store'] = None
|
62 |
-
st.session_state['loading'] = False
|
63 |
-
return
|
64 |
-
|
65 |
-
# Title for the progress bar
|
66 |
-
st.markdown("### Loading data...")
|
67 |
-
progress_bar = st.progress(0)
|
68 |
-
status_text = st.empty()
|
69 |
-
|
70 |
-
processed_count = 0
|
71 |
-
|
72 |
-
for file_path in pdf_files:
|
73 |
-
result = process_single_pdf(file_path)
|
74 |
-
all_text += result
|
75 |
-
processed_count += 1
|
76 |
-
progress_percentage = int((processed_count / num_files) * 100)
|
77 |
-
progress_bar.progress(processed_count / num_files)
|
78 |
-
status_text.text(f"Loading documents: {progress_percentage}% completed")
|
79 |
-
|
80 |
-
progress_bar.empty() # Remove the progress bar when done
|
81 |
-
status_text.text("Document loading completed!") # Show completion message
|
82 |
|
83 |
if all_text:
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
91 |
|
92 |
# Generate summary based on the retrieved text
|
93 |
def generate_summary_with_huggingface(query, retrieved_text):
|
@@ -98,10 +51,7 @@ def generate_summary_with_huggingface(query, retrieved_text):
|
|
98 |
return summary[0]["summary_text"]
|
99 |
|
100 |
# Generate response for user query
|
101 |
-
def user_input(user_question):
|
102 |
-
vector_store = st.session_state.get('vector_store')
|
103 |
-
if vector_store is None:
|
104 |
-
return "The app is still loading documents or no documents were successfully loaded."
|
105 |
docs = vector_store.similarity_search(user_question)
|
106 |
context_text = " ".join([doc.page_content for doc in docs])
|
107 |
return generate_summary_with_huggingface(user_question, context_text)
|
@@ -109,25 +59,25 @@ def user_input(user_question):
|
|
109 |
# Main function to run the Streamlit app
|
110 |
def main():
|
111 |
st.title("π Gen AI Lawyers Guide")
|
|
|
|
|
112 |
|
113 |
-
#
|
114 |
-
|
115 |
-
st.session_state['loading'] = True
|
116 |
-
load_pdfs_with_progress('documents1')
|
117 |
|
118 |
-
|
|
|
119 |
|
120 |
-
|
121 |
-
st.info("The app is loading documents in the background. You can type your question now and submit once loading is complete.")
|
122 |
|
123 |
if st.button("Get Response"):
|
124 |
if not user_question:
|
125 |
st.warning("Please enter a question before submitting.")
|
126 |
else:
|
127 |
with st.spinner("Generating response..."):
|
128 |
-
answer = user_input(user_question)
|
129 |
st.markdown(f"**π€ AI:** {answer}")
|
130 |
|
131 |
if __name__ == "__main__":
|
132 |
main()
|
133 |
-
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
import pdfplumber
|
|
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
from langchain.vectorstores import FAISS
|
|
|
17 |
|
18 |
summarizer = load_summarization_pipeline()
|
19 |
|
20 |
+
# Function to preprocess PDFs and store embeddings
|
21 |
+
def preprocess_pdfs(folder_path, save_vectorstore_path):
|
22 |
+
all_text = ""
|
23 |
+
pdf_files = [os.path.join(folder_path, filename) for filename in os.listdir(folder_path) if filename.endswith('.pdf')]
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
for file_path in pdf_files:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
with pdfplumber.open(file_path) as pdf:
|
27 |
for page in pdf.pages:
|
28 |
page_text = page.extract_text()
|
29 |
if page_text:
|
30 |
+
all_text += page_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
if all_text:
|
33 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
|
34 |
+
text_chunks = text_splitter.split_text(all_text)
|
35 |
+
embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
36 |
+
vector_store = FAISS.from_texts(text_chunks, embedding=embedding_function)
|
37 |
+
vector_store.save_local(save_vectorstore_path)
|
38 |
+
st.success("Data preprocessing and vector store creation completed!")
|
39 |
+
|
40 |
+
# Load pre-trained FAISS vector store
|
41 |
+
@st.cache_resource
|
42 |
+
def load_vector_store(save_vectorstore_path):
|
43 |
+
return FAISS.load_local(save_vectorstore_path, embedding_function=HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2"))
|
44 |
|
45 |
# Generate summary based on the retrieved text
|
46 |
def generate_summary_with_huggingface(query, retrieved_text):
|
|
|
51 |
return summary[0]["summary_text"]
|
52 |
|
53 |
# Generate response for user query
|
54 |
+
def user_input(user_question, vector_store):
|
|
|
|
|
|
|
55 |
docs = vector_store.similarity_search(user_question)
|
56 |
context_text = " ".join([doc.page_content for doc in docs])
|
57 |
return generate_summary_with_huggingface(user_question, context_text)
|
|
|
59 |
# Main function to run the Streamlit app
|
60 |
def main():
|
61 |
st.title("π Gen AI Lawyers Guide")
|
62 |
+
data_folder = 'documents1' # Folder where your PDFs are located
|
63 |
+
vectorstore_path = 'vector_store_data/faiss_vectorstore' # Folder to save the vector store
|
64 |
|
65 |
+
# Uncomment this line for initial preprocessing only. Once done, comment it out.
|
66 |
+
# preprocess_pdfs(data_folder, vectorstore_path)
|
|
|
|
|
67 |
|
68 |
+
# Load the pre-trained vector store
|
69 |
+
vector_store = load_vector_store(vectorstore_path)
|
70 |
|
71 |
+
user_question = st.text_input("Ask a Question:", placeholder="Type your question here...")
|
|
|
72 |
|
73 |
if st.button("Get Response"):
|
74 |
if not user_question:
|
75 |
st.warning("Please enter a question before submitting.")
|
76 |
else:
|
77 |
with st.spinner("Generating response..."):
|
78 |
+
answer = user_input(user_question, vector_store)
|
79 |
st.markdown(f"**π€ AI:** {answer}")
|
80 |
|
81 |
if __name__ == "__main__":
|
82 |
main()
|
83 |
+
|