File size: 4,354 Bytes
aca722a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4766737
aca722a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import os
import requests
import streamlit as st
from io import BytesIO
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from transformers import pipeline
import torch

# Set up the page configuration
st.set_page_config(page_title="RAG-based PDF Chat", layout="centered", page_icon="πŸ“„")

# Load the summarization pipeline model
@st.cache_resource
def load_summarization_pipeline():
    summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
    return summarizer

summarizer = load_summarization_pipeline()

# Dictionary of Hugging Face PDF URLs grouped by folders
PDF_FOLDERS = { "https://huggingface.co/spaces/ZeeAI1/PKLaws/tree/main/documents1"
    # Add folder-specific lists of PDF URLs as shown above
}

# Helper function to convert Hugging Face blob URLs to direct download URLs
def get_huggingface_raw_url(url):
    if "huggingface.co" in url and "/blob/" in url:
        return url.replace("/blob/", "/resolve/")
    return url

# Fetch and extract text from all PDFs in specified folders
def fetch_pdf_text_from_folders(pdf_folders):
    all_text = ""
    for folder_name, urls in pdf_folders.items():
        folder_text = f"\n[Folder: {folder_name}]\n"
        for url in urls:
            raw_url = get_huggingface_raw_url(url)
            try:
                response = requests.get(raw_url)
                response.raise_for_status()
                pdf_file = BytesIO(response.content)
                pdf_reader = PdfReader(pdf_file)
                for page in pdf_reader.pages:
                    page_text = page.extract_text()
                    if page_text:
                        folder_text += page_text
            except requests.RequestException as e:
                st.error(f"Failed to fetch PDF from URL: {url} - {e}")
            except Exception as e:
                st.error(f"Failed to read PDF from URL {url}: {e}")
        all_text += folder_text
    return all_text

# Split text into manageable chunks
@st.cache_data
def get_text_chunks(text):
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
    chunks = text_splitter.split_text(text)
    return chunks

# Initialize embedding function
embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")

# Create a FAISS vector store with embeddings, checking for empty chunks
@st.cache_resource
def load_or_create_vector_store(text_chunks):
    if not text_chunks:
        st.error("No valid text chunks found to create a vector store. Please check your PDF URLs or file content.")
        return None
    vector_store = FAISS.from_texts(text_chunks, embedding=embedding_function)
    return vector_store

# Generate summary based on the retrieved text
def generate_summary_with_huggingface(query, retrieved_text):
    summarization_input = f"{query}\n\nRelated information:\n{retrieved_text}"
    max_input_length = 1024
    summarization_input = summarization_input[:max_input_length]
    summary = summarizer(summarization_input, max_length=500, min_length=50, do_sample=False)
    return summary[0]["summary_text"]

# Generate response for user query
def user_input(user_question, vector_store):
    if vector_store is None:
        return "Vector store is empty due to failed PDF loading or empty documents."
    docs = vector_store.similarity_search(user_question)
    context_text = " ".join([doc.page_content for doc in docs])
    return generate_summary_with_huggingface(user_question, context_text)

# Main function to run the Streamlit app
def main():
    st.title("πŸ“„ Gen AI Lawyers Guide")
    raw_text = fetch_pdf_text_from_folders(PDF_FOLDERS)
    text_chunks = get_text_chunks(raw_text)
    vector_store = load_or_create_vector_store(text_chunks)

    user_question = st.text_input("Ask a Question:", placeholder="Type your question here...")

    if st.button("Get Response"):
        if not user_question:
            st.warning("Please enter a question before submitting.")
        else:
            with st.spinner("Generating response..."):
                answer = user_input(user_question, vector_store)
                st.markdown(f"**πŸ€– AI:** {answer}")

if __name__ == "__main__":
    main()