|
import streamlit as st |
|
import whisper |
|
from TTS.api import TTS |
|
from moviepy.editor import VideoFileClip, AudioFileClip |
|
import os |
|
from tempfile import NamedTemporaryFile |
|
|
|
|
|
st.set_page_config(page_title="AI Voiceover Generator", layout="centered") |
|
st.title("🎤 AI Voiceover + Subtitle Enhancer") |
|
|
|
|
|
@st.cache_resource |
|
def load_whisper_model(): |
|
return whisper.load_model("small") |
|
|
|
@st.cache_resource |
|
def load_tts_model(): |
|
return TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False, gpu=False) |
|
|
|
whisper_model = load_whisper_model() |
|
tts = load_tts_model() |
|
|
|
|
|
video_file = st.file_uploader("Upload a short video clip (MP4 preferred)", type=["mp4", "mov", "avi"]) |
|
|
|
if video_file: |
|
with NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_video: |
|
tmp_video.write(video_file.read()) |
|
tmp_video_path = tmp_video.name |
|
|
|
st.video(tmp_video_path) |
|
|
|
|
|
video = VideoFileClip(tmp_video_path) |
|
audio_path = tmp_video_path.replace(".mp4", ".wav") |
|
video.audio.write_audiofile(audio_path) |
|
|
|
|
|
st.info("Transcribing using Whisper...") |
|
result = whisper_model.transcribe(audio_path) |
|
st.subheader("📝 Detected Speech") |
|
st.write(result["text"]) |
|
|
|
|
|
custom_text = st.text_area("Enter your custom voiceover text:", "Here’s my voiceover explaining the video...") |
|
|
|
if st.button("Generate AI Voiceover"): |
|
voice_output_path = audio_path.replace(".wav", "_ai_voice.wav") |
|
tts.tts_to_file(text=custom_text, file_path=voice_output_path) |
|
st.audio(voice_output_path) |
|
|
|
|
|
final_video = video.set_audio(AudioFileClip(voice_output_path)) |
|
final_path = tmp_video_path.replace(".mp4", "_final.mp4") |
|
final_video.write_videofile(final_path, codec="libx264", audio_codec="aac") |
|
|
|
with open(final_path, "rb") as f: |
|
st.download_button(label="📥 Download Final Video", data=f, file_name="final_ai_video.mp4") |
|
|