Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import whisper
|
3 |
+
from TTS.api import TTS
|
4 |
+
from moviepy.editor import VideoFileClip, AudioFileClip, CompositeAudioClip
|
5 |
+
import os
|
6 |
+
from tempfile import NamedTemporaryFile
|
7 |
+
import torchaudio
|
8 |
+
|
9 |
+
# Page config
|
10 |
+
st.set_page_config(page_title="AI Voiceover Generator V2", layout="centered")
|
11 |
+
st.title("🎤 AI Voiceover V2: Replace One Speaker Only")
|
12 |
+
|
13 |
+
# Load models
|
14 |
+
@st.cache_resource
|
15 |
+
def load_whisper_model():
|
16 |
+
return whisper.load_model("small")
|
17 |
+
|
18 |
+
@st.cache_resource
|
19 |
+
def load_tts_model():
|
20 |
+
return TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False, gpu=False)
|
21 |
+
|
22 |
+
whisper_model = load_whisper_model()
|
23 |
+
tts = load_tts_model()
|
24 |
+
|
25 |
+
# Upload video
|
26 |
+
video_file = st.file_uploader("Upload a short video clip (MP4 preferred)", type=["mp4", "mov", "avi"])
|
27 |
+
|
28 |
+
if video_file:
|
29 |
+
with NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_video:
|
30 |
+
tmp_video.write(video_file.read())
|
31 |
+
tmp_video_path = tmp_video.name
|
32 |
+
|
33 |
+
st.video(tmp_video_path)
|
34 |
+
|
35 |
+
# Extract audio
|
36 |
+
video = VideoFileClip(tmp_video_path)
|
37 |
+
audio_path = tmp_video_path.replace(".mp4", ".wav")
|
38 |
+
video.audio.write_audiofile(audio_path)
|
39 |
+
|
40 |
+
# Transcribe
|
41 |
+
st.info("Transcribing using Whisper...")
|
42 |
+
result = whisper_model.transcribe(audio_path)
|
43 |
+
st.subheader("📝 Detected Speech")
|
44 |
+
st.write(result["text"])
|
45 |
+
|
46 |
+
# Custom voiceover input
|
47 |
+
custom_text = st.text_area("Enter your custom voiceover text to replace one speaker:", result["text"])
|
48 |
+
|
49 |
+
if st.button("Replace Only One Speaker's Voice"):
|
50 |
+
# Generate new voiceover from custom text
|
51 |
+
ai_voice_path = audio_path.replace(".wav", "_ai_voice.wav")
|
52 |
+
tts.tts_to_file(text=custom_text, file_path=ai_voice_path)
|
53 |
+
st.audio(ai_voice_path)
|
54 |
+
|
55 |
+
# Load original audio
|
56 |
+
original_audio, sr = torchaudio.load(audio_path)
|
57 |
+
ai_audio, _ = torchaudio.load(ai_voice_path)
|
58 |
+
|
59 |
+
# Trim or pad AI voice to match duration (for demo purposes)
|
60 |
+
if ai_audio.shape[1] < original_audio.shape[1]:
|
61 |
+
diff = original_audio.shape[1] - ai_audio.shape[1]
|
62 |
+
ai_audio = torchaudio.functional.pad(ai_audio, (0, diff))
|
63 |
+
else:
|
64 |
+
ai_audio = ai_audio[:, :original_audio.shape[1]]
|
65 |
+
|
66 |
+
# Mix original and AI audio (simulating voice replacement, basic blend)
|
67 |
+
# NOTE: This does NOT perform speaker diarization — it's a placeholder
|
68 |
+
mixed_audio = (original_audio * 0.4) + (ai_audio * 0.6)
|
69 |
+
mixed_path = audio_path.replace(".wav", "_mixed.wav")
|
70 |
+
torchaudio.save(mixed_path, mixed_audio, sr)
|
71 |
+
|
72 |
+
# Final video
|
73 |
+
final_video = video.set_audio(AudioFileClip(mixed_path))
|
74 |
+
final_path = tmp_video_path.replace(".mp4", "_final_v2.mp4")
|
75 |
+
final_video.write_videofile(final_path, codec="libx264", audio_codec="aac")
|
76 |
+
|
77 |
+
with open(final_path, "rb") as f:
|
78 |
+
st.download_button(label="📥 Download Final Video with Mixed Voiceover", data=f, file_name="final_ai_video_v2.mp4")
|