File size: 2,381 Bytes
857c06a
35239f7
 
 
 
 
a1b4f7f
 
857c06a
 
ad90a70
03ecc94
 
 
 
 
 
 
 
 
 
 
ad90a70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2ff771
ad90a70
 
 
 
 
 
35239f7
d7f4161
ad90a70
 
 
 
 
 
35239f7
d7f4161
ad90a70
 
 
 
 
 
03ecc94
 
 
 
 
 
 
 
 
 
ad90a70
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import gradio as gr
import pandas as pd
import random

data = pd.read_pickle("merged_all_table.pkl", compression='bz2')

home_team_id = sorted(data["home_team_long_name"].unique())
away_team_id = sorted(data["away_team_long_name"].unique())


def predict(*args):
    # TODO: need to complete the function
    # if str(home_team_id.value) == None:
    #     print(str(home_team_id.value))
    #     raise gr.Error("Home Team is required")
    
    # if str(Away_team_id.value)  == None:
    #     raise gr.Error("Away Team is required")

    # print(str(home_team_id.value))
    # return str(home_team_id.value)
    return "None"

# markup table for markdown
# # Members:
#     | Students Name      | Student ID |
#     |    :---    |    :----:   |
#     | Zeel Karshanbhai Sheladiya      | 500209119       | 
#     | Ravikumar Chandrakantbhai Patel   | 500196861        |
#     | Dharma Teja Reddy Bandreddi   | 500209454        |
#     | Sai Charan Reddy Meda  | 500201602        |
#     | Aditya Babu   | 500209122        |
#     | Sudip Bhattarai   | 500198055        |
#     | NOMAN FAZAL MUKADAM   | 500209115        |
#     | Leela Prasad Kavuri   | 500209550        |
#     | Vamsi Dasari   | 500200775        |

with gr.Blocks() as demo:
    gr.Markdown("""
    # Subject: Data Science Project Management and Requirement Gathering 02 (Group 4)
    [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/ravi7522/Football-Prediction)
    """)
    with gr.Row():
        gr.Label("⚽️ Football Prediction ⚽️", container=False)

    with gr.Row():
        with gr.Column():

            home_team_id = gr.Dropdown(
                label="Home Team",
                choices=home_team_id,
                max_choices=1,
            )

        with gr.Column(): 

            Away_team_id = gr.Dropdown(
                label="Away Team",
                choices=away_team_id,
                max_choices=1,
            )

    with gr.Row():
        predict_btn = gr.Button(value="Predict")
            
    with gr.Row():
        Answer = gr.Label("👋 Hello, Let us predict the Football Match 💁‍♂️", container=False)

    predict_btn.click(
        predict,
        inputs=[
            home_team_id,
            Away_team_id,
        ],
        outputs=[Answer],
    )

demo.launch()