File size: 2,951 Bytes
857c06a
35239f7
 
 
 
 
a1b4f7f
 
857c06a
 
6294029
78add90
 
6294029
03ecc94
78add90
6294029
 
 
 
 
 
b84d228
 
03ecc94
78add90
ad90a70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2ff771
ad90a70
 
 
 
78add90
ad90a70
35239f7
78add90
 
ad90a70
 
 
78add90
 
ad90a70
35239f7
78add90
 
ad90a70
 
6294029
 
 
 
 
 
 
 
 
 
 
ad90a70
 
 
 
03ecc94
 
 
 
 
78add90
 
6294029
03ecc94
 
 
ad90a70
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import gradio as gr
import pandas as pd
import random

data = pd.read_pickle("merged_all_table.pkl", compression='bz2')

home_team_id = sorted(data["home_team_long_name"].unique())
away_team_id = sorted(data["away_team_long_name"].unique())


def predict(Home_team, Away_team, Model_name):

    if Home_team == "":
        raise gr.Error("Home Team is required, Please Select The Home Team!")
    
    if Away_team  == "":
        raise gr.Error("Away Team is required, Please Select The Away Team!")
    
    if Model_name  == "":
        raise gr.Error("Model is required, Please Select The Model!")
    
    if Model_name == "Simple Model":
        # model = km.load_model('models/simple_model.pkl')
        pass

    return "Model is in under construction 🛠️🚜"

# markup table for markdown
# # Members:
#     | Students Name      | Student ID |
#     |    :---    |    :----:   |
#     | Zeel Karshanbhai Sheladiya      | 500209119       | 
#     | Ravikumar Chandrakantbhai Patel   | 500196861        |
#     | Dharma Teja Reddy Bandreddi   | 500209454        |
#     | Sai Charan Reddy Meda  | 500201602        |
#     | Aditya Babu   | 500209122        |
#     | Sudip Bhattarai   | 500198055        |
#     | NOMAN FAZAL MUKADAM   | 500209115        |
#     | Leela Prasad Kavuri   | 500209550        |
#     | Vamsi Dasari   | 500200775        |

with gr.Blocks() as demo:
    gr.Markdown("""
    # Subject: Data Science Project Management and Requirement Gathering 02 (Group 4)
    [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/ravi7522/Football-Prediction)
    """)
    with gr.Row():
        gr.Label("⚽️ Football Prediction ⚽️", container=False)

    with gr.Row():
        with gr.Column():

            dd_home_team = gr.Dropdown(
                label="Home Team",
                choices=home_team_id,
                info="Select Your Home Team:",
                multiselect=False,
            )

        with gr.Column(): 
        
            dd_away_team = gr.Dropdown(
                label="Away Team",
                choices=away_team_id,
                info="Select Your Away Team:",
                multiselect=False,
            )

    with gr.Row():

        with gr.Column(): 
        
            dd_model = gr.Dropdown(
                label="Model ( Feature Under Construction 🚧 )",
                choices=["Simple Model"],
                info="Select Your Model:",
                multiselect=False,
            )

    with gr.Row():
        predict_btn = gr.Button(value="Predict")
            
    with gr.Row():
        Answer = gr.Label("👋 Hello, Let us predict the Football Match 💁‍♂️", container=False)

    predict_btn.click(
        predict,
        inputs=[
            dd_home_team,
            dd_away_team,
            dd_model,
        ],
        outputs=[Answer],
    )

demo.launch()