Spaces:
Running
Running
File size: 4,921 Bytes
857c06a 35239f7 8fb8334 35239f7 a1b4f7f 857c06a 8fb8334 857c06a 6294029 78add90 6294029 03ecc94 78add90 6294029 8fb8334 03ecc94 ad90a70 c2ff771 ad90a70 78add90 ad90a70 35239f7 78add90 ad90a70 78add90 ad90a70 35239f7 78add90 ad90a70 6294029 8fb8334 6294029 ad90a70 03ecc94 78add90 6294029 03ecc94 ad90a70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import gradio as gr
import pandas as pd
import random
from keras.models import load_model
import numpy as np
data = pd.read_pickle("merged_all_table.pkl", compression='bz2')
home_team_id = sorted(data["home_team_long_name"].unique())
away_team_id = sorted(data["away_team_long_name"].unique())
nn_model = load_model('models/nn_model.h5')
def main_process(model, Home_team, Away_team):
home_temp = data[data["home_team_long_name"] == Home_team]
home_temp = home_temp[["home_team_overall_score", "home_total_goal", "home_players_avg_overall_rating", "home_players_avg_overall_score", "home_players_avg_ideal_body_rate", "home_total_win", "home_total_loose", "home_total_draw", "league_home_total_win", "league_home_total_loose", "league_home_total_draw"]]
print("Home Team Data Geathring ✅")
away_temp = data[data["away_team_long_name"] == Away_team]
away_temp = away_temp[["away_team_overall_score", "away_total_goal", "away_players_avg_overall_rating", "away_players_avg_overall_score", "away_players_avg_ideal_body_rate", "away_total_win", "away_total_loose", "away_total_draw", "league_away_total_win", "league_away_total_loose", "league_away_total_draw"]]
print("Away Team Data Geathring ✅")
table = pd.concat([home_temp.mean(), away_temp.mean()], axis=0)
table = table[["home_team_overall_score", "away_team_overall_score", "home_total_goal", "away_total_goal", "home_players_avg_overall_rating", "home_players_avg_overall_score", "home_players_avg_ideal_body_rate", "away_players_avg_overall_rating", "away_players_avg_overall_score", "away_players_avg_ideal_body_rate", "home_total_win", "home_total_loose", "home_total_draw", "away_total_win", "away_total_loose", "away_total_draw", "league_home_total_win", "league_home_total_loose", "league_home_total_draw", "league_away_total_win", "league_away_total_loose", "league_away_total_draw"]]
print("Table Concatination ✅")
X = table.to_frame().T
pred = model.predict(X)
predicted_labels = np.argmax(pred)
print("Data Prediction ✅")
print(predicted_labels)
return predicted_labels
def predict(Home_team, Away_team, Model_name):
if Home_team == "":
raise gr.Error("Home Team is required, Please Select The Home Team!")
if Away_team == "":
raise gr.Error("Away Team is required, Please Select The Away Team!")
if Model_name == "":
raise gr.Error("Model is required, Please Select The Model!")
if Model_name == "Simple Nueral Network Model":
model = nn_model
prediction = main_process(model, Home_team, Away_team)
if prediction == 0:
return "🥳 Home Team Win 🎉"
if prediction == 1:
return "🥳 Away Team Win 🎉"
if prediction == 2:
return "😑 Match Draw 😑"
# markup table for markdown
# # Members:
# | Students Name | Student ID |
# | :--- | :----: |
# | Zeel Karshanbhai Sheladiya | 500209119 |
# | Ravikumar Chandrakantbhai Patel | 500196861 |
# | Dharma Teja Reddy Bandreddi | 500209454 |
# | Sai Charan Reddy Meda | 500201602 |
# | Aditya Babu | 500209122 |
# | Sudip Bhattarai | 500198055 |
# | NOMAN FAZAL MUKADAM | 500209115 |
# | Leela Prasad Kavuri | 500209550 |
# | Vamsi Dasari | 500200775 |
with gr.Blocks() as demo:
gr.Markdown("""
[](https://github.com/ravi7522/Football-Prediction)
""")
with gr.Row():
gr.Label("⚽️ Football Prediction ⚽️", container=False)
with gr.Row():
with gr.Column():
dd_home_team = gr.Dropdown(
label="Home Team",
choices=home_team_id,
info="Select Your Home Team:",
multiselect=False,
)
with gr.Column():
dd_away_team = gr.Dropdown(
label="Away Team",
choices=away_team_id,
info="Select Your Away Team:",
multiselect=False,
)
with gr.Row():
with gr.Column():
dd_model = gr.Dropdown(
label="Model ( Feature Under Construction 🚧 )",
choices=["Simple Nueral Network Model"],
info="Select Your Model:",
multiselect=False,
)
with gr.Row():
predict_btn = gr.Button(value="Predict")
with gr.Row():
Answer = gr.Label("👋 Hello, Let us predict the Football Match 💁♂️", container=False)
predict_btn.click(
predict,
inputs=[
dd_home_team,
dd_away_team,
dd_model,
],
outputs=[Answer],
)
demo.launch() |