Spaces:
Sleeping
Sleeping
Update tasks/text.py
Browse files- tasks/text.py +7 -6
tasks/text.py
CHANGED
@@ -8,9 +8,11 @@ from .utils.evaluation import TextEvaluationRequest
|
|
8 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
9 |
|
10 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
11 |
-
import torch
|
12 |
|
13 |
import numpy as np
|
|
|
|
|
|
|
14 |
|
15 |
|
16 |
router = APIRouter()
|
@@ -61,14 +63,13 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
61 |
#--------------------------------------------------------------------------------------------
|
62 |
|
63 |
|
64 |
-
|
65 |
model_name = "Zen0/FrugalDisinfoHunter"
|
66 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
67 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
68 |
-
|
69 |
|
70 |
# Tokenize the test data
|
71 |
-
test_texts = test_dataset["
|
72 |
inputs = tokenizer(test_texts, padding=True, truncation=True, return_tensors="pt", max_length=512)
|
73 |
|
74 |
# Move model and inputs to GPU if available
|
@@ -81,9 +82,9 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
81 |
outputs = model(**inputs)
|
82 |
logits = outputs.logits
|
83 |
|
84 |
-
# Get predictions from the logits
|
85 |
predictions = torch.argmax(logits, dim=-1).cpu().numpy()
|
86 |
-
|
87 |
true_labels = test_dataset['label']
|
88 |
|
89 |
#--------------------------------------------------------------------------------------------
|
|
|
8 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
9 |
|
10 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
11 |
|
12 |
import numpy as np
|
13 |
+
from climate_model import ModelWrapper
|
14 |
+
from preprocessing import ClimateTextPreprocessor
|
15 |
+
import torch
|
16 |
|
17 |
|
18 |
router = APIRouter()
|
|
|
63 |
#--------------------------------------------------------------------------------------------
|
64 |
|
65 |
|
66 |
+
# Model and Tokenizer
|
67 |
model_name = "Zen0/FrugalDisinfoHunter"
|
68 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
69 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
|
|
70 |
|
71 |
# Tokenize the test data
|
72 |
+
test_texts = test_dataset["quote"] # Changed from "text" to "quote"
|
73 |
inputs = tokenizer(test_texts, padding=True, truncation=True, return_tensors="pt", max_length=512)
|
74 |
|
75 |
# Move model and inputs to GPU if available
|
|
|
82 |
outputs = model(**inputs)
|
83 |
logits = outputs.logits
|
84 |
|
85 |
+
# Get predictions from the logits
|
86 |
predictions = torch.argmax(logits, dim=-1).cpu().numpy()
|
87 |
+
|
88 |
true_labels = test_dataset['label']
|
89 |
|
90 |
#--------------------------------------------------------------------------------------------
|