from transformers import AutoTokenizer, AutoModelForSequenceClassification from fastapi import APIRouter from datetime import datetime from datasets import load_dataset from sklearn.metrics import accuracy_score import torch import numpy as np from .utils.evaluation import TextEvaluationRequest from .utils.emissions import tracker, clean_emissions_data, get_space_info router = APIRouter() DESCRIPTION = "FrugalDisinfoHunter Model" ROUTE = "/text" @router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION) async def evaluate_text(request: TextEvaluationRequest): """ Evaluate text classification for climate disinformation detection. """ # Get space info username, space_url = get_space_info() # Define the label mapping LABEL_MAPPING = { "0_not_relevant": 0, "1_not_happening": 1, "2_not_human": 2, "3_not_bad": 3, "4_solutions_harmful_unnecessary": 4, "5_science_unreliable": 5, "6_proponents_biased": 6, "7_fossil_fuels_needed": 7 } # Load and prepare the dataset dataset = load_dataset(request.dataset_name) # Convert string labels to integers dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) # Split dataset train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed) test_dataset = train_test["test"] # Start tracking emissions tracker.start() tracker.start_task("inference") try: # Model configuration model_name = "google/mobilebert-uncased" # Base model local_weights = "model/model.pt" # Path to our trained weights BATCH_SIZE = 32 MAX_LENGTH = 256 # Increased from 128 # Initialize tokenizer and model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained( model_name, num_labels=8, problem_type="single_label_classification" ) # Load our trained weights try: state_dict = torch.load(local_weights, map_location='cpu') model.load_state_dict(state_dict) except Exception as e: print(f"Error loading weights: {e}") # Continue with base model if weights fail to load pass # Move model to appropriate device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) model.eval() # Set to evaluation mode # Get test texts and process in batches test_texts = test_dataset["quote"] predictions = [] # Process in batches for i in range(0, len(test_texts), BATCH_SIZE): # Clear CUDA cache if using GPU if torch.cuda.is_available(): torch.cuda.empty_cache() batch_texts = test_texts[i:i + BATCH_SIZE] # Tokenize with padding and attention masks inputs = tokenizer( batch_texts, padding=True, truncation=True, max_length=MAX_LENGTH, return_tensors="pt" ) # Move inputs to device inputs = {k: v.to(device) for k, v in inputs.items()} # Run inference with no gradient computation with torch.no_grad(): outputs = model(**inputs) batch_preds = torch.argmax(outputs.logits, dim=1) predictions.extend(batch_preds.cpu().numpy()) # Get true labels true_labels = test_dataset['label'] # Stop tracking emissions emissions_data = tracker.stop_task() # Calculate accuracy accuracy = accuracy_score(true_labels, predictions) # Prepare results dictionary results = { "username": username, "space_url": space_url, "submission_timestamp": datetime.now().isoformat(), "model_description": DESCRIPTION, "accuracy": float(accuracy), "energy_consumed_wh": emissions_data.energy_consumed * 1000, "emissions_gco2eq": emissions_data.emissions * 1000, "emissions_data": clean_emissions_data(emissions_data), "api_route": ROUTE, "dataset_config": { "dataset_name": request.dataset_name, "test_size": request.test_size, "test_seed": request.test_seed } } return results except Exception as e: # Stop tracking in case of error tracker.stop_task() raise e