Spaces:
Runtime error
Runtime error
Commit
·
ad2ecf0
1
Parent(s):
d25fdfc
v04 update
Browse files- .gitignore +45 -0
- README.md +3 -1
- __init__.py +2 -0
- app.py +615 -0
- cls_name/cls_name.csv +80 -0
- cls_name/cls_name.yaml +7 -0
- cls_name/cls_name_ar.yaml +9 -0
- cls_name/cls_name_en.yaml +9 -0
- cls_name/cls_name_es.yaml +9 -0
- cls_name/cls_name_ko.yaml +9 -0
- cls_name/cls_name_ru.yaml +9 -0
- cls_name/cls_name_zh.yaml +7 -0
- img_example/Millenial-at-work.jpg +0 -0
- img_example/bus.jpg +0 -0
- img_example/giraffe.jpg +0 -0
- img_example/read.txt +0 -0
- img_example/zidane.jpg +0 -0
- model_config/model_name_p5_all.csv +5 -0
- model_config/model_name_p5_all.yaml +1 -0
- model_config/model_name_p5_n.csv +1 -0
- model_config/model_name_p5_n.yaml +1 -0
- model_config/model_name_p5_p6_all.yaml +1 -0
- model_config/model_name_p6_all.csv +5 -0
- model_config/model_name_p6_all.yaml +1 -0
- model_download/yolov5_model_p5_all.sh +8 -0
- model_download/yolov5_model_p5_n.sh +4 -0
- model_download/yolov5_model_p6_all.sh +8 -0
- requirements.txt +38 -0
- util/fonts_opt.py +69 -0
- util/pdf_opt.py +78 -0
.gitignore
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 图片格式
|
| 2 |
+
*.jpg
|
| 3 |
+
*.jpeg
|
| 4 |
+
*.png
|
| 5 |
+
*.svg
|
| 6 |
+
*.gif
|
| 7 |
+
|
| 8 |
+
# 视频格式
|
| 9 |
+
*.mp4
|
| 10 |
+
*.avi
|
| 11 |
+
.ipynb_checkpoints
|
| 12 |
+
*/__pycache__
|
| 13 |
+
|
| 14 |
+
# 日志格式
|
| 15 |
+
*.log
|
| 16 |
+
*.data
|
| 17 |
+
*.txt
|
| 18 |
+
*.csv
|
| 19 |
+
|
| 20 |
+
# 参数文件
|
| 21 |
+
*.yaml
|
| 22 |
+
*.json
|
| 23 |
+
|
| 24 |
+
# 压缩文件格式
|
| 25 |
+
*.zip
|
| 26 |
+
*.tar
|
| 27 |
+
*.tar.gz
|
| 28 |
+
*.rar
|
| 29 |
+
|
| 30 |
+
# 字体格式
|
| 31 |
+
*.ttc
|
| 32 |
+
*.ttf
|
| 33 |
+
*.otf
|
| 34 |
+
|
| 35 |
+
*.pt
|
| 36 |
+
*.db
|
| 37 |
+
|
| 38 |
+
/flagged
|
| 39 |
+
/run
|
| 40 |
+
!requirements.txt
|
| 41 |
+
!cls_name/*
|
| 42 |
+
!model_config/*
|
| 43 |
+
!img_example/*
|
| 44 |
+
|
| 45 |
+
app copy.py
|
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
title: Gradio_YOLOv5_Det_v4
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: yellow
|
| 5 |
colorTo: indigo
|
| 6 |
sdk: gradio
|
|
@@ -11,3 +11,5 @@ license: gpl-3.0
|
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
title: Gradio_YOLOv5_Det_v4
|
| 3 |
+
emoji: 🚀
|
| 4 |
colorFrom: yellow
|
| 5 |
colorTo: indigo
|
| 6 |
sdk: gradio
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
| 14 |
+
|
| 15 |
+
🚀 Project homepage:https://gitee.com/CV_Lab/gradio_yolov5_det
|
__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__author__ = "曾逸夫(Zeng Yifu)"
|
| 2 |
+
__email__ = "[email protected]"
|
app.py
ADDED
|
@@ -0,0 +1,615 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Gradio YOLOv5 Det v0.4
|
| 2 |
+
# author: Zeng Yifu(曾逸夫)
|
| 3 |
+
# creation time: 2022-05-28
|
| 4 |
+
# email: [email protected]
|
| 5 |
+
# project homepage: https://gitee.com/CV_Lab/gradio_yolov5_det
|
| 6 |
+
|
| 7 |
+
import argparse
|
| 8 |
+
import csv
|
| 9 |
+
import gc
|
| 10 |
+
import json
|
| 11 |
+
import os
|
| 12 |
+
import sys
|
| 13 |
+
from collections import Counter
|
| 14 |
+
from pathlib import Path
|
| 15 |
+
|
| 16 |
+
import cv2
|
| 17 |
+
import gradio as gr
|
| 18 |
+
import numpy as np
|
| 19 |
+
import pandas as pd
|
| 20 |
+
import torch
|
| 21 |
+
import yaml
|
| 22 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 23 |
+
|
| 24 |
+
from util.fonts_opt import is_fonts
|
| 25 |
+
from util.pdf_opt import pdf_generate
|
| 26 |
+
|
| 27 |
+
ROOT_PATH = sys.path[0] # root directory
|
| 28 |
+
|
| 29 |
+
# model path
|
| 30 |
+
model_path = "ultralytics/yolov5"
|
| 31 |
+
|
| 32 |
+
# Gradio YOLOv5 Det version
|
| 33 |
+
GYD_VERSION = "Gradio YOLOv5 Det v0.4"
|
| 34 |
+
|
| 35 |
+
# model name temporary variable
|
| 36 |
+
model_name_tmp = ""
|
| 37 |
+
|
| 38 |
+
# Device temporary variables
|
| 39 |
+
device_tmp = ""
|
| 40 |
+
|
| 41 |
+
# File extension
|
| 42 |
+
suffix_list = [".csv", ".yaml"]
|
| 43 |
+
|
| 44 |
+
# font size
|
| 45 |
+
FONTSIZE = 25
|
| 46 |
+
|
| 47 |
+
# object style
|
| 48 |
+
obj_style = ["Small Object", "Medium Object", "Large Object"]
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def parse_args(known=False):
|
| 52 |
+
parser = argparse.ArgumentParser(description="Gradio YOLOv5 Det v0.4")
|
| 53 |
+
parser.add_argument("--source", "-src", default="upload", type=str, help="input source")
|
| 54 |
+
parser.add_argument("--source_video", "-src_v", default="upload", type=str, help="video input source")
|
| 55 |
+
parser.add_argument("--img_tool", "-it", default="editor", type=str, help="input image tool")
|
| 56 |
+
parser.add_argument("--model_name", "-mn", default="yolov5s", type=str, help="model name")
|
| 57 |
+
parser.add_argument(
|
| 58 |
+
"--model_cfg",
|
| 59 |
+
"-mc",
|
| 60 |
+
default="./model_config/model_name_p5_p6_all.yaml",
|
| 61 |
+
type=str,
|
| 62 |
+
help="model config",
|
| 63 |
+
)
|
| 64 |
+
parser.add_argument(
|
| 65 |
+
"--cls_name",
|
| 66 |
+
"-cls",
|
| 67 |
+
default="./cls_name/cls_name_en.yaml",
|
| 68 |
+
type=str,
|
| 69 |
+
help="cls name",
|
| 70 |
+
)
|
| 71 |
+
parser.add_argument(
|
| 72 |
+
"--nms_conf",
|
| 73 |
+
"-conf",
|
| 74 |
+
default=0.5,
|
| 75 |
+
type=float,
|
| 76 |
+
help="model NMS confidence threshold",
|
| 77 |
+
)
|
| 78 |
+
parser.add_argument("--nms_iou", "-iou", default=0.45, type=float, help="model NMS IoU threshold")
|
| 79 |
+
parser.add_argument(
|
| 80 |
+
"--device",
|
| 81 |
+
"-dev",
|
| 82 |
+
default="cpu",
|
| 83 |
+
type=str,
|
| 84 |
+
help="cuda or cpu",
|
| 85 |
+
)
|
| 86 |
+
parser.add_argument("--inference_size", "-isz", default=640, type=int, help="model inference size")
|
| 87 |
+
parser.add_argument("--max_detnum", "-mdn", default=50, type=float, help="model max det num")
|
| 88 |
+
parser.add_argument("--slider_step", "-ss", default=0.05, type=float, help="slider step")
|
| 89 |
+
parser.add_argument(
|
| 90 |
+
"--is_login",
|
| 91 |
+
"-isl",
|
| 92 |
+
action="store_true",
|
| 93 |
+
default=False,
|
| 94 |
+
help="is login",
|
| 95 |
+
)
|
| 96 |
+
parser.add_argument('--usr_pwd',
|
| 97 |
+
"-up",
|
| 98 |
+
nargs='+',
|
| 99 |
+
type=str,
|
| 100 |
+
default=["admin", "admin"],
|
| 101 |
+
help="user & password for login")
|
| 102 |
+
parser.add_argument(
|
| 103 |
+
"--is_share",
|
| 104 |
+
"-is",
|
| 105 |
+
action="store_true",
|
| 106 |
+
default=False,
|
| 107 |
+
help="is login",
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
args = parser.parse_known_args()[0] if known else parser.parse_args()
|
| 111 |
+
return args
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
# yaml file parsing
|
| 115 |
+
def yaml_parse(file_path):
|
| 116 |
+
return yaml.safe_load(open(file_path, encoding="utf-8").read())
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
# yaml csv file parsing
|
| 120 |
+
def yaml_csv(file_path, file_tag):
|
| 121 |
+
file_suffix = Path(file_path).suffix
|
| 122 |
+
if file_suffix == suffix_list[0]:
|
| 123 |
+
# model name
|
| 124 |
+
file_names = [i[0] for i in list(csv.reader(open(file_path)))] # csv version
|
| 125 |
+
elif file_suffix == suffix_list[1]:
|
| 126 |
+
# model name
|
| 127 |
+
file_names = yaml_parse(file_path).get(file_tag) # yaml version
|
| 128 |
+
else:
|
| 129 |
+
print(f"{file_path} is not in the correct format! Program exits!")
|
| 130 |
+
sys.exit()
|
| 131 |
+
|
| 132 |
+
return file_names
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
# model loading
|
| 136 |
+
def model_loading(model_name, device):
|
| 137 |
+
|
| 138 |
+
# load model
|
| 139 |
+
model = torch.hub.load(model_path, model_name, force_reload=True, device=device, _verbose=False)
|
| 140 |
+
|
| 141 |
+
return model
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
# check information
|
| 145 |
+
def export_json(results, img_size):
|
| 146 |
+
|
| 147 |
+
return [[{
|
| 148 |
+
"ID": i,
|
| 149 |
+
"CLASS": int(result[i][5]),
|
| 150 |
+
"CLASS_NAME": model_cls_name_cp[int(result[i][5])],
|
| 151 |
+
"BOUNDING_BOX": {
|
| 152 |
+
"XMIN": round(result[i][:4].tolist()[0], 6),
|
| 153 |
+
"YMIN": round(result[i][:4].tolist()[1], 6),
|
| 154 |
+
"XMAX": round(result[i][:4].tolist()[2], 6),
|
| 155 |
+
"YMAX": round(result[i][:4].tolist()[3], 6),},
|
| 156 |
+
"CONF": round(float(result[i][4]), 2),
|
| 157 |
+
"FPS": round(1000 / float(results.t[1]), 2),
|
| 158 |
+
"IMG_WIDTH": img_size[0],
|
| 159 |
+
"IMG_HEIGHT": img_size[1],} for i in range(len(result))] for result in results.xyxyn]
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
# frame conversion
|
| 163 |
+
def pil_draw(img, countdown_msg, textFont, xyxy, font_size, opt):
|
| 164 |
+
|
| 165 |
+
img_pil = ImageDraw.Draw(img)
|
| 166 |
+
|
| 167 |
+
img_pil.rectangle(xyxy, fill=None, outline="green") # bounding box
|
| 168 |
+
|
| 169 |
+
if "label" in opt:
|
| 170 |
+
text_w, text_h = textFont.getsize(countdown_msg) # Label size
|
| 171 |
+
img_pil.rectangle(
|
| 172 |
+
(xyxy[0], xyxy[1], xyxy[0] + text_w, xyxy[1] + text_h),
|
| 173 |
+
fill="green",
|
| 174 |
+
outline="green",
|
| 175 |
+
) # label background
|
| 176 |
+
img_pil.multiline_text(
|
| 177 |
+
(xyxy[0], xyxy[1]),
|
| 178 |
+
countdown_msg,
|
| 179 |
+
fill=(205, 250, 255),
|
| 180 |
+
font=textFont,
|
| 181 |
+
align="center",
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
return img
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
# YOLOv5 image detection function
|
| 188 |
+
def yolo_det_img(img, device, model_name, infer_size, conf, iou, max_num, model_cls, opt):
|
| 189 |
+
|
| 190 |
+
global model, model_name_tmp, device_tmp
|
| 191 |
+
|
| 192 |
+
# object size num
|
| 193 |
+
s_obj, m_obj, l_obj = 0, 0, 0
|
| 194 |
+
# object area list
|
| 195 |
+
area_obj_all = []
|
| 196 |
+
# cls num stat
|
| 197 |
+
cls_det_stat = []
|
| 198 |
+
|
| 199 |
+
if model_name_tmp != model_name:
|
| 200 |
+
# Model judgment to avoid repeated loading
|
| 201 |
+
model_name_tmp = model_name
|
| 202 |
+
model = model_loading(model_name_tmp, device)
|
| 203 |
+
elif device_tmp != device:
|
| 204 |
+
device_tmp = device
|
| 205 |
+
model = model_loading(model_name_tmp, device)
|
| 206 |
+
|
| 207 |
+
# -------------Model tuning -------------
|
| 208 |
+
model.conf = conf # NMS confidence threshold
|
| 209 |
+
model.iou = iou # NMS IoU threshold
|
| 210 |
+
model.max_det = int(max_num) # Maximum number of detection frames
|
| 211 |
+
model.classes = model_cls # model classes
|
| 212 |
+
|
| 213 |
+
img_size = img.size # frame size
|
| 214 |
+
|
| 215 |
+
results = model(img, size=infer_size) # detection
|
| 216 |
+
|
| 217 |
+
# Data Frame
|
| 218 |
+
dataframe = results.pandas().xyxy[0].round(2)
|
| 219 |
+
|
| 220 |
+
# ----------------Load fonts----------------
|
| 221 |
+
yaml_index = cls_name.index(".yaml")
|
| 222 |
+
cls_name_lang = cls_name[yaml_index - 2:yaml_index]
|
| 223 |
+
|
| 224 |
+
if cls_name_lang == "zh":
|
| 225 |
+
# Chinese
|
| 226 |
+
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/SimSun.ttf"), size=FONTSIZE)
|
| 227 |
+
elif cls_name_lang in ["en", "ru", "es", "ar"]:
|
| 228 |
+
# English, Russian, Spanish, Arabic
|
| 229 |
+
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/TimesNewRoman.ttf"), size=FONTSIZE)
|
| 230 |
+
elif cls_name_lang == "ko":
|
| 231 |
+
# Korean
|
| 232 |
+
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/malgun.ttf"), size=FONTSIZE)
|
| 233 |
+
|
| 234 |
+
for result in results.xyxyn:
|
| 235 |
+
for i in range(len(result)):
|
| 236 |
+
id = int(i) # instance ID
|
| 237 |
+
obj_cls_index = int(result[i][5]) # category index
|
| 238 |
+
obj_cls = model_cls_name_cp[obj_cls_index] # category
|
| 239 |
+
cls_det_stat.append(obj_cls)
|
| 240 |
+
|
| 241 |
+
# ------------ border coordinates ------------
|
| 242 |
+
x0 = float(result[i][:4].tolist()[0])
|
| 243 |
+
y0 = float(result[i][:4].tolist()[1])
|
| 244 |
+
x1 = float(result[i][:4].tolist()[2])
|
| 245 |
+
y1 = float(result[i][:4].tolist()[3])
|
| 246 |
+
|
| 247 |
+
# ------------ Actual coordinates of the border ------------
|
| 248 |
+
x0 = int(img_size[0] * x0)
|
| 249 |
+
y0 = int(img_size[1] * y0)
|
| 250 |
+
x1 = int(img_size[0] * x1)
|
| 251 |
+
y1 = int(img_size[1] * y1)
|
| 252 |
+
|
| 253 |
+
conf = float(result[i][4]) # confidence
|
| 254 |
+
# fps = f"{(1000 / float(results.t[1])):.2f}" # FPS
|
| 255 |
+
|
| 256 |
+
det_img = pil_draw(
|
| 257 |
+
img,
|
| 258 |
+
f"{id}-{obj_cls}:{conf:.2f}",
|
| 259 |
+
textFont,
|
| 260 |
+
[x0, y0, x1, y1],
|
| 261 |
+
FONTSIZE,
|
| 262 |
+
opt,
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
# ----------add object size----------
|
| 266 |
+
w_obj = x1 - x0
|
| 267 |
+
h_obj = y1 - y0
|
| 268 |
+
area_obj = w_obj * h_obj
|
| 269 |
+
area_obj_all.append(area_obj)
|
| 270 |
+
|
| 271 |
+
# ------------JSON generate------------
|
| 272 |
+
det_json = export_json(results, img.size)[0] # Detection information
|
| 273 |
+
det_json_format = json.dumps(det_json, sort_keys=False, indent=4, separators=(",", ":"),
|
| 274 |
+
ensure_ascii=False) # JSON formatting
|
| 275 |
+
|
| 276 |
+
if "json" not in opt:
|
| 277 |
+
det_json = None
|
| 278 |
+
|
| 279 |
+
# -------PDF generate-------
|
| 280 |
+
report = "./Det_Report.pdf"
|
| 281 |
+
if "pdf" in opt:
|
| 282 |
+
pdf_generate(f"{det_json_format}", report, GYD_VERSION)
|
| 283 |
+
else:
|
| 284 |
+
report = None
|
| 285 |
+
|
| 286 |
+
# --------------object size compute--------------
|
| 287 |
+
for i in range(len(area_obj_all)):
|
| 288 |
+
if (0 < area_obj_all[i] <= 32 ** 2):
|
| 289 |
+
s_obj = s_obj + 1
|
| 290 |
+
elif (32 ** 2 < area_obj_all[i] <= 96 ** 2):
|
| 291 |
+
m_obj = m_obj + 1
|
| 292 |
+
elif (area_obj_all[i] > 96 ** 2):
|
| 293 |
+
l_obj = l_obj + 1
|
| 294 |
+
|
| 295 |
+
sml_obj_total = s_obj + m_obj + l_obj
|
| 296 |
+
|
| 297 |
+
objSize_dict = {obj_style[i]: [s_obj, m_obj, l_obj][i] / sml_obj_total for i in range(3)}
|
| 298 |
+
|
| 299 |
+
# ------------cls stat------------
|
| 300 |
+
clsRatio_dict = {}
|
| 301 |
+
clsDet_dict = Counter(cls_det_stat)
|
| 302 |
+
clsDet_dict_sum = sum(clsDet_dict.values())
|
| 303 |
+
|
| 304 |
+
for k, v in clsDet_dict.items():
|
| 305 |
+
clsRatio_dict[k] = v / clsDet_dict_sum
|
| 306 |
+
|
| 307 |
+
return det_img, objSize_dict, clsRatio_dict, det_json, report, dataframe
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
# YOLOv5 video detection function
|
| 311 |
+
def yolo_det_video(video, device, model_name, infer_size, conf, iou, max_num, model_cls, opt):
|
| 312 |
+
|
| 313 |
+
global model, model_name_tmp, device_tmp
|
| 314 |
+
|
| 315 |
+
os.system("""
|
| 316 |
+
if [ -e './output.mp4' ]; then
|
| 317 |
+
rm ./output.mp4
|
| 318 |
+
fi
|
| 319 |
+
""")
|
| 320 |
+
|
| 321 |
+
if model_name_tmp != model_name:
|
| 322 |
+
# Model judgment to avoid repeated loading
|
| 323 |
+
model_name_tmp = model_name
|
| 324 |
+
model = model_loading(model_name_tmp, device)
|
| 325 |
+
elif device_tmp != device:
|
| 326 |
+
device_tmp = device
|
| 327 |
+
model = model_loading(model_name_tmp, device)
|
| 328 |
+
|
| 329 |
+
# -------------Model tuning -------------
|
| 330 |
+
model.conf = conf # NMS confidence threshold
|
| 331 |
+
model.iou = iou # NMS IOU threshold
|
| 332 |
+
model.max_det = int(max_num) # Maximum number of detection frames
|
| 333 |
+
model.classes = model_cls # model classes
|
| 334 |
+
|
| 335 |
+
# ----------------Load fonts----------------
|
| 336 |
+
yaml_index = cls_name.index(".yaml")
|
| 337 |
+
cls_name_lang = cls_name[yaml_index - 2:yaml_index]
|
| 338 |
+
|
| 339 |
+
if cls_name_lang == "zh":
|
| 340 |
+
# Chinese
|
| 341 |
+
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/SimSun.ttf"), size=FONTSIZE)
|
| 342 |
+
elif cls_name_lang in ["en", "ru", "es", "ar"]:
|
| 343 |
+
# English, Russian, Spanish, Arabic
|
| 344 |
+
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/TimesNewRoman.ttf"), size=FONTSIZE)
|
| 345 |
+
elif cls_name_lang == "ko":
|
| 346 |
+
# Korean
|
| 347 |
+
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/malgun.ttf"), size=FONTSIZE)
|
| 348 |
+
|
| 349 |
+
# video->frame
|
| 350 |
+
gc.collect()
|
| 351 |
+
output_video_path = "./output.avi"
|
| 352 |
+
cap = cv2.VideoCapture(video)
|
| 353 |
+
fourcc = cv2.VideoWriter_fourcc(*"I420") # encoder
|
| 354 |
+
|
| 355 |
+
out = cv2.VideoWriter(output_video_path, fourcc, 30.0, (int(cap.get(3)), int(cap.get(4))))
|
| 356 |
+
while cap.isOpened():
|
| 357 |
+
ret, frame = cap.read()
|
| 358 |
+
# Determine empty frame
|
| 359 |
+
if not ret:
|
| 360 |
+
break
|
| 361 |
+
|
| 362 |
+
frame2 = frame.copy()
|
| 363 |
+
results = model(frame2, size=infer_size) # detection
|
| 364 |
+
h, w, _ = frame.shape # frame size
|
| 365 |
+
img_size = (w, h) # frame size
|
| 366 |
+
|
| 367 |
+
for result in results.xyxyn:
|
| 368 |
+
for i in range(len(result)):
|
| 369 |
+
id = int(i) # instance ID
|
| 370 |
+
obj_cls_index = int(result[i][5]) # category index
|
| 371 |
+
obj_cls = model_cls_name_cp[obj_cls_index] # category
|
| 372 |
+
|
| 373 |
+
# ------------ border coordinates ------------
|
| 374 |
+
x0 = float(result[i][:4].tolist()[0])
|
| 375 |
+
y0 = float(result[i][:4].tolist()[1])
|
| 376 |
+
x1 = float(result[i][:4].tolist()[2])
|
| 377 |
+
y1 = float(result[i][:4].tolist()[3])
|
| 378 |
+
|
| 379 |
+
# ------------ Actual coordinates of the border ------------
|
| 380 |
+
x0 = int(img_size[0] * x0)
|
| 381 |
+
y0 = int(img_size[1] * y0)
|
| 382 |
+
x1 = int(img_size[0] * x1)
|
| 383 |
+
y1 = int(img_size[1] * y1)
|
| 384 |
+
|
| 385 |
+
conf = float(result[i][4]) # confidence
|
| 386 |
+
# fps = f"{(1000 / float(results.t[1])):.2f}" # FPS
|
| 387 |
+
|
| 388 |
+
frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
| 389 |
+
frame = pil_draw(
|
| 390 |
+
frame,
|
| 391 |
+
f"{id}-{obj_cls}:{conf:.2f}",
|
| 392 |
+
textFont,
|
| 393 |
+
[x0, y0, x1, y1],
|
| 394 |
+
FONTSIZE,
|
| 395 |
+
opt,
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
frame = cv2.cvtColor(np.asarray(frame), cv2.COLOR_RGB2BGR)
|
| 399 |
+
|
| 400 |
+
# frame->video
|
| 401 |
+
out.write(frame)
|
| 402 |
+
out.release()
|
| 403 |
+
cap.release()
|
| 404 |
+
cv2.destroyAllWindows()
|
| 405 |
+
|
| 406 |
+
return output_video_path
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
def main(args):
|
| 410 |
+
gr.close_all()
|
| 411 |
+
|
| 412 |
+
global model, model_cls_name_cp, cls_name
|
| 413 |
+
|
| 414 |
+
source = args.source
|
| 415 |
+
source_video = args.source_video
|
| 416 |
+
img_tool = args.img_tool
|
| 417 |
+
nms_conf = args.nms_conf
|
| 418 |
+
nms_iou = args.nms_iou
|
| 419 |
+
model_name = args.model_name
|
| 420 |
+
model_cfg = args.model_cfg
|
| 421 |
+
cls_name = args.cls_name
|
| 422 |
+
device = args.device
|
| 423 |
+
inference_size = args.inference_size
|
| 424 |
+
max_detnum = args.max_detnum
|
| 425 |
+
slider_step = args.slider_step
|
| 426 |
+
is_login = args.is_login
|
| 427 |
+
usr_pwd = args.usr_pwd
|
| 428 |
+
is_share = args.is_share
|
| 429 |
+
|
| 430 |
+
is_fonts(f"{ROOT_PATH}/fonts") # Check font files
|
| 431 |
+
|
| 432 |
+
# model loading
|
| 433 |
+
model = model_loading(model_name, device)
|
| 434 |
+
|
| 435 |
+
model_names = yaml_csv(model_cfg, "model_names") # model names
|
| 436 |
+
model_cls_name = yaml_csv(cls_name, "model_cls_name") # class name
|
| 437 |
+
|
| 438 |
+
model_cls_name_cp = model_cls_name.copy() # class name
|
| 439 |
+
|
| 440 |
+
# ------------------- Input Components -------------------
|
| 441 |
+
inputs_img = gr.Image(image_mode="RGB", source=source, tool=img_tool, type="pil", label="original image")
|
| 442 |
+
inputs_device01 = gr.Radio(choices=["cuda:0", "cpu"], value=device, label="device")
|
| 443 |
+
inputs_model01 = gr.Dropdown(choices=model_names, value=model_name, type="value", label="model")
|
| 444 |
+
inputs_size01 = gr.Radio(choices=[320, 640, 1280], value=inference_size, label="inference size")
|
| 445 |
+
input_conf01 = gr.Slider(0, 1, step=slider_step, value=nms_conf, label="confidence threshold")
|
| 446 |
+
inputs_iou01 = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU threshold")
|
| 447 |
+
inputs_maxnum01 = gr.Number(value=max_detnum, label="Maximum number of detections")
|
| 448 |
+
inputs_clsName01 = gr.CheckboxGroup(choices=model_cls_name, value=model_cls_name, type="index", label="category")
|
| 449 |
+
inputs_opt01 = gr.CheckboxGroup(choices=["label", "pdf", "json"],
|
| 450 |
+
value=["label", "pdf"],
|
| 451 |
+
type="value",
|
| 452 |
+
label="operate")
|
| 453 |
+
|
| 454 |
+
# ------------------- Input Components -------------------
|
| 455 |
+
inputs_video = gr.Video(format="mp4", source=source_video, label="original video") # webcam
|
| 456 |
+
inputs_device02 = gr.Radio(choices=["cuda:0", "cpu"], value=device, label="device")
|
| 457 |
+
inputs_model02 = gr.Dropdown(choices=model_names, value=model_name, type="value", label="model")
|
| 458 |
+
inputs_size02 = gr.Radio(choices=[320, 640, 1280], value=inference_size, label="inference size")
|
| 459 |
+
input_conf02 = gr.Slider(0, 1, step=slider_step, value=nms_conf, label="confidence threshold")
|
| 460 |
+
inputs_iou02 = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU threshold")
|
| 461 |
+
inputs_maxnum02 = gr.Number(value=max_detnum, label="Maximum number of detections")
|
| 462 |
+
inputs_clsName02 = gr.CheckboxGroup(choices=model_cls_name, value=model_cls_name, type="index", label="category")
|
| 463 |
+
inputs_opt02 = gr.CheckboxGroup(choices=["label"], value=["label"], type="value", label="operate")
|
| 464 |
+
|
| 465 |
+
# Input parameters
|
| 466 |
+
inputs_img_list = [
|
| 467 |
+
inputs_img, # input image
|
| 468 |
+
inputs_device01, # device
|
| 469 |
+
inputs_model01, # model
|
| 470 |
+
inputs_size01, # inference size
|
| 471 |
+
input_conf01, # confidence threshold
|
| 472 |
+
inputs_iou01, # IoU threshold
|
| 473 |
+
inputs_maxnum01, # maximum number of detections
|
| 474 |
+
inputs_clsName01, # category
|
| 475 |
+
inputs_opt01, # detect operations
|
| 476 |
+
]
|
| 477 |
+
|
| 478 |
+
inputs_video_list = [
|
| 479 |
+
inputs_video, # input image
|
| 480 |
+
inputs_device02, # device
|
| 481 |
+
inputs_model02, # model
|
| 482 |
+
inputs_size02, # inference size
|
| 483 |
+
input_conf02, # confidence threshold
|
| 484 |
+
inputs_iou02, # IoU threshold
|
| 485 |
+
inputs_maxnum02, # maximum number of detections
|
| 486 |
+
inputs_clsName02, # category
|
| 487 |
+
inputs_opt02, # detect operation
|
| 488 |
+
]
|
| 489 |
+
|
| 490 |
+
# -------------------output component-------------------
|
| 491 |
+
outputs_img = gr.Image(type="pil", label="Detection image")
|
| 492 |
+
outputs_json = gr.JSON(label="Detection information")
|
| 493 |
+
outputs_pdf = gr.File(label="Download test report")
|
| 494 |
+
outputs_df = gr.Dataframe(max_rows=5,
|
| 495 |
+
overflow_row_behaviour="paginate",
|
| 496 |
+
type="pandas",
|
| 497 |
+
label="List of detection information")
|
| 498 |
+
outputs_objSize = gr.Label(label="Object size ratio statistics")
|
| 499 |
+
outputs_clsSize = gr.Label(label="Category detection proportion statistics")
|
| 500 |
+
|
| 501 |
+
# -------------------output component-------------------
|
| 502 |
+
outputs_video = gr.Video(format='mp4', label="Detection video")
|
| 503 |
+
|
| 504 |
+
# output parameters
|
| 505 |
+
outputs_img_list = [outputs_img, outputs_objSize, outputs_clsSize, outputs_json, outputs_pdf, outputs_df]
|
| 506 |
+
outputs_video_list = [outputs_video]
|
| 507 |
+
|
| 508 |
+
# title
|
| 509 |
+
title = "Gradio YOLOv5 Det v0.4"
|
| 510 |
+
|
| 511 |
+
# describe
|
| 512 |
+
description = "<div align='center'>Customizable target detection model, easy to install, easy to use</div>"
|
| 513 |
+
# article="https://gitee.com/CV_Lab/gradio_yolov5_det"
|
| 514 |
+
|
| 515 |
+
# example image
|
| 516 |
+
examples = [
|
| 517 |
+
[
|
| 518 |
+
"./img_example/bus.jpg",
|
| 519 |
+
"cpu",
|
| 520 |
+
"yolov5s",
|
| 521 |
+
640,
|
| 522 |
+
0.6,
|
| 523 |
+
0.5,
|
| 524 |
+
10,
|
| 525 |
+
["person", "bus"],
|
| 526 |
+
["label", "pdf"],],
|
| 527 |
+
[
|
| 528 |
+
"./img_example/giraffe.jpg",
|
| 529 |
+
"cpu",
|
| 530 |
+
"yolov5l",
|
| 531 |
+
320,
|
| 532 |
+
0.5,
|
| 533 |
+
0.45,
|
| 534 |
+
12,
|
| 535 |
+
["giraffe"],
|
| 536 |
+
["label", "pdf"],],
|
| 537 |
+
[
|
| 538 |
+
"./img_example/zidane.jpg",
|
| 539 |
+
"cpu",
|
| 540 |
+
"yolov5m",
|
| 541 |
+
640,
|
| 542 |
+
0.25,
|
| 543 |
+
0.5,
|
| 544 |
+
15,
|
| 545 |
+
["person", "tie"],
|
| 546 |
+
["pdf", "json"],],
|
| 547 |
+
[
|
| 548 |
+
"./img_example/Millenial-at-work.jpg",
|
| 549 |
+
"cpu",
|
| 550 |
+
"yolov5s6",
|
| 551 |
+
1280,
|
| 552 |
+
0.5,
|
| 553 |
+
0.5,
|
| 554 |
+
20,
|
| 555 |
+
["person", "chair", "cup", "laptop"],
|
| 556 |
+
["label", "pdf"],],]
|
| 557 |
+
|
| 558 |
+
# interface
|
| 559 |
+
gyd_img = gr.Interface(
|
| 560 |
+
fn=yolo_det_img,
|
| 561 |
+
inputs=inputs_img_list,
|
| 562 |
+
outputs=outputs_img_list,
|
| 563 |
+
title=title,
|
| 564 |
+
description=description,
|
| 565 |
+
# article=article,
|
| 566 |
+
# examples=examples,
|
| 567 |
+
# theme="seafoam",
|
| 568 |
+
# live=True, # Change output in real time
|
| 569 |
+
flagging_dir="run", # output directory
|
| 570 |
+
# allow_flagging="manual",
|
| 571 |
+
# flagging_options=["good", "generally", "bad"],
|
| 572 |
+
)
|
| 573 |
+
|
| 574 |
+
gyd_video = gr.Interface(
|
| 575 |
+
# fn=yolo_det_video_test,
|
| 576 |
+
fn=yolo_det_video,
|
| 577 |
+
inputs=inputs_video_list,
|
| 578 |
+
outputs=outputs_video_list,
|
| 579 |
+
title=title,
|
| 580 |
+
description=description,
|
| 581 |
+
# article=article,
|
| 582 |
+
# examples=examples,
|
| 583 |
+
# theme="seafoam",
|
| 584 |
+
# live=True, # Change output in real time
|
| 585 |
+
flagging_dir="run", # output directory
|
| 586 |
+
allow_flagging="never",
|
| 587 |
+
# flagging_options=["good", "generally", "bad"],
|
| 588 |
+
)
|
| 589 |
+
|
| 590 |
+
gyd = gr.TabbedInterface(interface_list=[gyd_img, gyd_video], tab_names=["Image Mode", "Video Mode"])
|
| 591 |
+
|
| 592 |
+
if not is_login:
|
| 593 |
+
gyd.launch(
|
| 594 |
+
inbrowser=True, # Automatically open default browser
|
| 595 |
+
show_tips=True, # Automatically display the latest features of gradio
|
| 596 |
+
share=is_share, # Project sharing, other devices can access
|
| 597 |
+
favicon_path="./icon/logo.ico", # web icon
|
| 598 |
+
show_error=True, # Display error message in browser console
|
| 599 |
+
quiet=True, # Suppress most print statements
|
| 600 |
+
)
|
| 601 |
+
else:
|
| 602 |
+
gyd.launch(
|
| 603 |
+
inbrowser=True, # Automatically open default browser
|
| 604 |
+
show_tips=True, # Automatically display the latest features of gradio
|
| 605 |
+
auth=usr_pwd, # login interface
|
| 606 |
+
share=is_share, # Project sharing, other devices can access
|
| 607 |
+
favicon_path="./icon/logo.ico", # web icon
|
| 608 |
+
show_error=True, # Display error message in browser console
|
| 609 |
+
quiet=True, # Suppress most print statements
|
| 610 |
+
)
|
| 611 |
+
|
| 612 |
+
|
| 613 |
+
if __name__ == "__main__":
|
| 614 |
+
args = parse_args()
|
| 615 |
+
main(args)
|
cls_name/cls_name.csv
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
人
|
| 2 |
+
自行车
|
| 3 |
+
汽车
|
| 4 |
+
摩托车
|
| 5 |
+
飞机
|
| 6 |
+
公交车
|
| 7 |
+
火车
|
| 8 |
+
卡车
|
| 9 |
+
船
|
| 10 |
+
红绿灯
|
| 11 |
+
消防栓
|
| 12 |
+
停止标志
|
| 13 |
+
停车收费表
|
| 14 |
+
长凳
|
| 15 |
+
鸟
|
| 16 |
+
猫
|
| 17 |
+
狗
|
| 18 |
+
马
|
| 19 |
+
羊
|
| 20 |
+
牛
|
| 21 |
+
象
|
| 22 |
+
熊
|
| 23 |
+
斑马
|
| 24 |
+
长颈鹿
|
| 25 |
+
背包
|
| 26 |
+
雨伞
|
| 27 |
+
手提包
|
| 28 |
+
领带
|
| 29 |
+
手提箱
|
| 30 |
+
飞盘
|
| 31 |
+
滑雪板
|
| 32 |
+
单板滑雪
|
| 33 |
+
运动球
|
| 34 |
+
风筝
|
| 35 |
+
棒球棒
|
| 36 |
+
棒球手套
|
| 37 |
+
滑板
|
| 38 |
+
冲浪板
|
| 39 |
+
网球拍
|
| 40 |
+
瓶子
|
| 41 |
+
红酒杯
|
| 42 |
+
杯子
|
| 43 |
+
叉子
|
| 44 |
+
刀
|
| 45 |
+
勺
|
| 46 |
+
碗
|
| 47 |
+
香蕉
|
| 48 |
+
苹果
|
| 49 |
+
三明治
|
| 50 |
+
橙子
|
| 51 |
+
西兰花
|
| 52 |
+
胡萝卜
|
| 53 |
+
热狗
|
| 54 |
+
比萨
|
| 55 |
+
甜甜圈
|
| 56 |
+
蛋糕
|
| 57 |
+
椅子
|
| 58 |
+
长椅
|
| 59 |
+
盆栽
|
| 60 |
+
床
|
| 61 |
+
餐桌
|
| 62 |
+
马桶
|
| 63 |
+
电视
|
| 64 |
+
笔记本电脑
|
| 65 |
+
鼠标
|
| 66 |
+
遥控器
|
| 67 |
+
键盘
|
| 68 |
+
手机
|
| 69 |
+
微波炉
|
| 70 |
+
烤箱
|
| 71 |
+
烤面包机
|
| 72 |
+
洗碗槽
|
| 73 |
+
冰箱
|
| 74 |
+
书
|
| 75 |
+
时钟
|
| 76 |
+
花瓶
|
| 77 |
+
剪刀
|
| 78 |
+
泰迪熊
|
| 79 |
+
吹风机
|
| 80 |
+
牙刷
|
cls_name/cls_name.yaml
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model_cls_name: ['人', '自行车', '汽车', '摩托车', '飞机', '公交车', '火车', '卡车', '船', '红绿灯', '消防栓', '停止标志',
|
| 2 |
+
'停车收费表', '长凳', '鸟', '猫', '狗', '马', '羊', '牛', '象', '熊', '斑马', '长颈鹿', '背包', '雨伞', '手提包', '领带',
|
| 3 |
+
'手提箱', '飞盘', '滑雪板', '单板滑雪', '运动球', '风筝', '棒球棒', '棒球手套', '滑板', '冲浪板', '网球拍', '瓶子', '红酒杯',
|
| 4 |
+
'杯子', '叉子', '刀', '勺', '碗', '香蕉', '苹果', '三明治', '橙子', '西兰花', '胡萝卜', '热狗', '比萨', '甜甜圈', '蛋糕',
|
| 5 |
+
'椅子', '长椅', '盆栽', '床', '餐桌', '马桶', '电视', '笔记本电脑', '鼠标', '遥控器', '键盘', '手机', '微波炉', '烤箱',
|
| 6 |
+
'烤面包机', '洗碗槽', '冰箱', '书', '时钟', '花瓶', '剪刀', '泰迪熊', '吹风机', '牙刷'
|
| 7 |
+
]
|
cls_name/cls_name_ar.yaml
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model_cls_name: [" الناس " , " الدراجات " , " السيارات " , " الدراجات النارية " , " الطائرات " , " الحافلات " , " القطارات " , " الشاحنات " , " السفن " , " إشارات المرور " ,
|
| 2 |
+
" صنبور " , " علامة " , " موقف سيارات " , " الجدول " , " مقعد " , " الطيور " , " القط " , " الكلب " , " الحصان " , " الأغنام " , " الثور " , " الفيل " ,
|
| 3 |
+
" الدب " , " حمار وحشي " , " الزرافة " , " حقيبة " , " مظلة " , " حقيبة يد " , " ربطة عنق " , " حقيبة " , " الفريسبي " , " الزلاجات " , " الزلاجات " ,
|
| 4 |
+
" الكرة الرياضية " , " طائرة ورقية " , " مضرب بيسبول " , " قفازات البيسبول " , " لوح التزلج " , " ركوب الأمواج " , " مضرب تنس " , " زجاجة " ,
|
| 5 |
+
" كأس " , " كأس " , " شوكة " , " سكين " , " ملعقة " , " وعاء " , " الموز " , " التفاح " , " ساندويتش " , " البرتقال " , " القرنبيط " ,
|
| 6 |
+
" الجزر " , " الكلاب الساخنة " , " البيتزا " , " دونات " , " كعكة " , " كرسي " , " أريكة " , " بوعاء " , " السرير " , " طاولة الطعام " , " المرحاض " ,
|
| 7 |
+
التلفزيون , الكمبيوتر المحمول , الفأرة , وحدة تحكم عن بعد , لوحة المفاتيح , الهاتف المحمول , فرن الميكروويف , محمصة خبز كهربائية , بالوعة , ثلاجة ,
|
| 8 |
+
" كتاب " , " ساعة " , " زهرية " , " مقص " , " دمية دب " , " مجفف الشعر " , " فرشاة الأسنان "
|
| 9 |
+
]
|
cls_name/cls_name_en.yaml
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model_cls_name: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
|
| 2 |
+
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant',
|
| 3 |
+
'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard',
|
| 4 |
+
'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle',
|
| 5 |
+
'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli',
|
| 6 |
+
'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet',
|
| 7 |
+
'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator',
|
| 8 |
+
'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
|
| 9 |
+
]
|
cls_name/cls_name_es.yaml
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model_cls_name: ['persona', 'bicicleta', 'coche', 'motocicleta', 'avión', 'autobús', 'tren', 'camión', 'barco', 'semáforo',
|
| 2 |
+
'boca de incendios', 'señal de alto', 'parquímetro', 'banco', 'pájaro', 'gato', 'perro', 'caballo', 'oveja', 'vaca', 'elefante',
|
| 3 |
+
'oso', 'cebra', 'jirafa', 'mochila', 'paraguas', 'bolso', 'corbata', 'maleta', 'frisbee', 'esquís', 'snowboard',
|
| 4 |
+
'pelota deportiva', 'cometa', 'bate de béisbol', 'guante de béisbol', 'monopatín', 'tabla de surf', 'raqueta de tenis', 'botella',
|
| 5 |
+
'copa de vino', 'taza', 'tenedor', 'cuchillo', 'cuchara', 'tazón', 'plátano', 'manzana', 'sándwich', 'naranja', 'brócoli',
|
| 6 |
+
'zanahoria', 'perrito caliente', 'pizza', 'rosquilla', 'pastel', 'silla', 'sofá', 'planta en maceta', 'cama', 'mesa de comedor', 'inodoro',
|
| 7 |
+
'tv', 'laptop', 'ratón', 'control remoto', 'teclado', 'celular', 'microondas', 'horno', 'tostadora', 'fregadero', 'nevera',
|
| 8 |
+
'libro', 'reloj', 'jarrón', 'tijeras', 'oso de peluche', 'secador de pelo', 'cepillo de dientes'
|
| 9 |
+
]
|
cls_name/cls_name_ko.yaml
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model_cls_name: ['사람', '자전거', '자동차', '오토바이', '비행기', '버스', '기차', '트럭', '보트', '신호등',
|
| 2 |
+
'소화전', '정지 신호', '주차 미터기', '벤치', '새', '고양이', '개', '말', '양', '소', '코끼리',
|
| 3 |
+
'곰', '얼룩말', '기린', '배낭', '우산', '핸드백', '타이', '여행가방', '프리스비', '스키', '스노우보드',
|
| 4 |
+
'스포츠 공', '연', '야구 방망이', '야구 글러브', '스케이트보드', '서프보드', '테니스 라켓', '병',
|
| 5 |
+
'와인잔', '컵', '포크', '나이프', '숟가락', '그릇', '바나나', '사과', '샌드위치', '오렌지', '브로콜리',
|
| 6 |
+
'당근', '핫도그', '피자', '도넛', '케이크', '의자', '소파', '화분', '침대', '식탁', '화장실',
|
| 7 |
+
'tv', '노트북', '마우스', '리모컨', '키보드', '휴대전화', '전자레인지', '오븐', '토스터', '싱크대', '냉장고',
|
| 8 |
+
'책', '시계', '꽃병', '가위', '테디베어', '드라이기', '칫솔'
|
| 9 |
+
]
|
cls_name/cls_name_ru.yaml
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model_cls_name: ['человек', 'велосипед', 'автомобиль', 'мотоцикл', 'самолет', 'автобус', 'поезд', 'грузовик', 'лодка', 'светофор',
|
| 2 |
+
'пожарный гидрант', 'стоп', 'паркомат', 'скамейка', 'птица', 'кошка', 'собака', 'лошадь', 'овца', 'корова', 'слон',
|
| 3 |
+
'медведь', 'зебра', 'жираф', 'рюкзак', 'зонт', 'сумочка', 'галстук', 'чемодан', 'фрисби', 'лыжи', 'сноуборд',
|
| 4 |
+
'спортивный мяч', 'воздушный змей', 'бейсбольная бита', 'бейсбольная перчатка', 'скейтборд', 'доска для серфинга', 'теннисная ракетка', 'бутылка',
|
| 5 |
+
'бокал', 'чашка', 'вилка', 'нож', 'ложка', 'миска', 'банан', 'яблоко', 'бутерброд', 'апельсин', 'брокколи',
|
| 6 |
+
'морковь', 'хот-дог', 'пицца', 'пончик', 'торт', 'стул', 'диван', 'растение в горшке', 'кровать', 'обеденный стол', 'туалет',
|
| 7 |
+
'телевизор', 'ноутбук', 'мышь', 'пульт', 'клавиатура', 'мобильный телефон', 'микроволновая печь', 'духовка', 'тостер', 'раковина', 'холодильник',
|
| 8 |
+
'книга', 'часы', 'ваза', 'ножницы', 'плюшевый мишка', 'фен', 'зубная щетка'
|
| 9 |
+
]
|
cls_name/cls_name_zh.yaml
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model_cls_name: ['人', '自行车', '汽车', '摩托车', '飞机', '公交车', '火车', '卡车', '船', '红绿灯', '消防栓', '停止标志',
|
| 2 |
+
'停车收费表', '长凳', '鸟', '猫', '狗', '马', '羊', '牛', '象', '熊', '斑马', '长颈鹿', '背包', '雨伞', '手提包', '领带',
|
| 3 |
+
'手提箱', '飞盘', '滑雪板', '单板滑雪', '运动球', '风筝', '棒球棒', '棒球手套', '滑板', '冲浪板', '网球拍', '瓶子', '红酒杯',
|
| 4 |
+
'杯子', '叉子', '刀', '勺', '碗', '香蕉', '苹果', '三明治', '橙子', '西兰花', '胡萝卜', '热狗', '比萨', '甜甜圈', '蛋糕',
|
| 5 |
+
'椅子', '长椅', '盆栽', '床', '餐桌', '马桶', '电视', '笔记本电脑', '鼠标', '遥控器', '键盘', '手机', '微波炉', '烤箱',
|
| 6 |
+
'烤面包机', '洗碗槽', '冰箱', '书', '时钟', '花瓶', '剪刀', '泰迪熊', '吹风机', '牙刷'
|
| 7 |
+
]
|
img_example/Millenial-at-work.jpg
ADDED
|
img_example/bus.jpg
ADDED
|
img_example/giraffe.jpg
ADDED
|
img_example/read.txt
ADDED
|
File without changes
|
img_example/zidane.jpg
ADDED
|
model_config/model_name_p5_all.csv
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
yolov5n
|
| 2 |
+
yolov5s
|
| 3 |
+
yolov5m
|
| 4 |
+
yolov5l
|
| 5 |
+
yolov5x
|
model_config/model_name_p5_all.yaml
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
model_names: ["yolov5n", "yolov5s", "yolov5m", "yolov5l", "yolov5x"]
|
model_config/model_name_p5_n.csv
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
yolov5n
|
model_config/model_name_p5_n.yaml
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
model_names: ["yolov5n"]
|
model_config/model_name_p5_p6_all.yaml
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
model_names: ["yolov5n", "yolov5s", "yolov5m", "yolov5l", "yolov5x", "yolov5n6", "yolov5s6", "yolov5m6", "yolov5l6", "yolov5x6"]
|
model_config/model_name_p6_all.csv
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
yolov5n6
|
| 2 |
+
yolov5s6
|
| 3 |
+
yolov5m6
|
| 4 |
+
yolov5l6
|
| 5 |
+
yolov5x6
|
model_config/model_name_p6_all.yaml
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
model_names: ["yolov5n6", "yolov5s6", "yolov5m6", "yolov5l6", "yolov5x6"]
|
model_download/yolov5_model_p5_all.sh
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
cd ./yolov5
|
| 2 |
+
|
| 3 |
+
# 下载YOLOv5模型
|
| 4 |
+
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5n.pt
|
| 5 |
+
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s.pt
|
| 6 |
+
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5m.pt
|
| 7 |
+
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5l.pt
|
| 8 |
+
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5x.pt
|
model_download/yolov5_model_p5_n.sh
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
cd ./yolov5
|
| 2 |
+
|
| 3 |
+
# 下载YOLOv5模型
|
| 4 |
+
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5n.pt
|
model_download/yolov5_model_p6_all.sh
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
cd ./yolov5
|
| 2 |
+
|
| 3 |
+
# 下载YOLOv5模型
|
| 4 |
+
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5n6.pt
|
| 5 |
+
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s6.pt
|
| 6 |
+
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5m6.pt
|
| 7 |
+
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5l6.pt
|
| 8 |
+
wget -c -t 0 https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5x6.pt
|
requirements.txt
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Base ----------------------------------------
|
| 2 |
+
matplotlib>=3.2.2
|
| 3 |
+
numpy>=1.18.5
|
| 4 |
+
opencv-python-headless>=4.5.5.64
|
| 5 |
+
Pillow>=7.1.2
|
| 6 |
+
PyYAML>=5.3.1
|
| 7 |
+
requests>=2.23.0
|
| 8 |
+
scipy>=1.4.1
|
| 9 |
+
torch>=1.7.0
|
| 10 |
+
torchvision>=0.8.1
|
| 11 |
+
tqdm>=4.41.0
|
| 12 |
+
wget>=3.2
|
| 13 |
+
rich>=12.2.0
|
| 14 |
+
fpdf>=1.7.2
|
| 15 |
+
|
| 16 |
+
# Logging -------------------------------------
|
| 17 |
+
tensorboard>=2.4.1
|
| 18 |
+
# wandb
|
| 19 |
+
|
| 20 |
+
# Plotting ------------------------------------
|
| 21 |
+
pandas>=1.1.4
|
| 22 |
+
seaborn>=0.11.0
|
| 23 |
+
|
| 24 |
+
# Export --------------------------------------
|
| 25 |
+
# coremltools>=4.1 # CoreML export
|
| 26 |
+
# onnx>=1.9.0 # ONNX export
|
| 27 |
+
# onnx-simplifier>=0.3.6 # ONNX simplifier
|
| 28 |
+
# scikit-learn==0.19.2 # CoreML quantization
|
| 29 |
+
# tensorflow>=2.4.1 # TFLite export
|
| 30 |
+
# tensorflowjs>=3.9.0 # TF.js export
|
| 31 |
+
# openvino-dev # OpenVINO export
|
| 32 |
+
|
| 33 |
+
# Extras --------------------------------------
|
| 34 |
+
# albumentations>=1.0.3
|
| 35 |
+
# Cython # for pycocotools https://github.com/cocodataset/cocoapi/issues/172
|
| 36 |
+
# pycocotools>=2.0 # COCO mAP
|
| 37 |
+
# roboflow
|
| 38 |
+
thop # FLOPs computation
|
util/fonts_opt.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# font management
|
| 2 |
+
# author: Zeng Yifu(曾逸夫)
|
| 3 |
+
# creation time: 2022-05-01
|
| 4 |
+
# email: [email protected]
|
| 5 |
+
# project homepage: https://gitee.com/CV_Lab/gradio_yolov5_det
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import sys
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
|
| 11 |
+
import wget
|
| 12 |
+
from rich.console import Console
|
| 13 |
+
|
| 14 |
+
ROOT_PATH = sys.path[0] # Project root directory
|
| 15 |
+
|
| 16 |
+
# Chinese, English, Russian, Spanish, Arabic, Korean
|
| 17 |
+
fonts_list = ["SimSun.ttf", "TimesNewRoman.ttf", "malgun.ttf"] # font list
|
| 18 |
+
fonts_suffix = ["ttc", "ttf", "otf"] # font suffix
|
| 19 |
+
|
| 20 |
+
data_url_dict = {
|
| 21 |
+
"SimSun.ttf": "https://gitee.com/CV_Lab/gradio_yolov5_det/attach_files/1053539/download/SimSun.ttf",
|
| 22 |
+
"TimesNewRoman.ttf": "https://gitee.com/CV_Lab/gradio_yolov5_det/attach_files/1053537/download/TimesNewRoman.ttf",
|
| 23 |
+
"malgun.ttf": "https://gitee.com/CV_Lab/gradio_yolov5_det/attach_files/1053538/download/malgun.ttf",}
|
| 24 |
+
|
| 25 |
+
console = Console()
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
# create font library
|
| 29 |
+
def add_fronts(font_diff):
|
| 30 |
+
|
| 31 |
+
global font_name
|
| 32 |
+
|
| 33 |
+
for k, v in data_url_dict.items():
|
| 34 |
+
if k in font_diff:
|
| 35 |
+
font_name = v.split("/")[-1] # font name
|
| 36 |
+
Path(f"{ROOT_PATH}/fonts").mkdir(parents=True, exist_ok=True) # Create a directory
|
| 37 |
+
|
| 38 |
+
file_path = f"{ROOT_PATH}/fonts/{font_name}" # font path
|
| 39 |
+
|
| 40 |
+
try:
|
| 41 |
+
# Download font file
|
| 42 |
+
wget.download(v, file_path)
|
| 43 |
+
except Exception as e:
|
| 44 |
+
print("Path error! Program ended!")
|
| 45 |
+
print(e)
|
| 46 |
+
sys.exit()
|
| 47 |
+
else:
|
| 48 |
+
print()
|
| 49 |
+
console.print(f"{font_name} [bold green]font file download complete![/bold green] has been saved to: {file_path}")
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
# Determine the font file
|
| 53 |
+
def is_fonts(fonts_dir):
|
| 54 |
+
if os.path.isdir(fonts_dir):
|
| 55 |
+
# if the font library exists
|
| 56 |
+
f_list = os.listdir(fonts_dir) # local font library
|
| 57 |
+
|
| 58 |
+
font_diff = list(set(fonts_list).difference(set(f_list)))
|
| 59 |
+
|
| 60 |
+
if font_diff != []:
|
| 61 |
+
# font does not exist
|
| 62 |
+
console.print("[bold red] font does not exist, loading...[/bold red]")
|
| 63 |
+
add_fronts(font_diff) # Create a font library
|
| 64 |
+
else:
|
| 65 |
+
console.print(f"{fonts_list}[bold green]font already exists![/bold green]")
|
| 66 |
+
else:
|
| 67 |
+
# The font library does not exist, create a font library
|
| 68 |
+
console.print("[bold red]font library does not exist, creating...[/bold red]")
|
| 69 |
+
add_fronts(fonts_list) # Create a font library
|
util/pdf_opt.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# PDF management
|
| 2 |
+
# author: Zeng Yifu
|
| 3 |
+
# creation time: 2022-05-05
|
| 4 |
+
|
| 5 |
+
from fpdf import FPDF
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# PDF generation class
|
| 9 |
+
class PDF(FPDF):
|
| 10 |
+
# Reference: https://pyfpdf.readthedocs.io/en/latest/Tutorial/index.html
|
| 11 |
+
def header(self):
|
| 12 |
+
# Set Chinese font
|
| 13 |
+
self.add_font("SimSun", "", "./fonts/SimSun.ttf", uni=True)
|
| 14 |
+
self.set_font("SimSun", "", 16)
|
| 15 |
+
# Calculate width of title and position
|
| 16 |
+
w = self.get_string_width(title) + 6
|
| 17 |
+
self.set_x((210 - w) / 2)
|
| 18 |
+
# Colors of frame, background and text
|
| 19 |
+
self.set_draw_color(255, 255, 255)
|
| 20 |
+
self.set_fill_color(255, 255, 255)
|
| 21 |
+
self.set_text_color(0, 0, 0)
|
| 22 |
+
# Thickness of frame (1 mm)
|
| 23 |
+
# self.set_line_width(1)
|
| 24 |
+
# Title
|
| 25 |
+
self.cell(w, 9, title, 1, 1, "C", 1)
|
| 26 |
+
# Line break
|
| 27 |
+
self.ln(10)
|
| 28 |
+
|
| 29 |
+
def footer(self):
|
| 30 |
+
# Position at 1.5 cm from bottom
|
| 31 |
+
self.set_y(-15)
|
| 32 |
+
# Set Chinese font
|
| 33 |
+
self.add_font("SimSun", "", "./fonts/SimSun.ttf", uni=True)
|
| 34 |
+
self.set_font("SimSun", "", 12)
|
| 35 |
+
# Text color in gray
|
| 36 |
+
self.set_text_color(128)
|
| 37 |
+
# Page number
|
| 38 |
+
self.cell(0, 10, "Page " + str(self.page_no()), 0, 0, "C")
|
| 39 |
+
|
| 40 |
+
def chapter_title(self, num, label):
|
| 41 |
+
# Set Chinese font
|
| 42 |
+
self.add_font("SimSun", "", "./fonts/SimSun.ttf", uni=True)
|
| 43 |
+
self.set_font("SimSun", "", 12)
|
| 44 |
+
# Background color
|
| 45 |
+
self.set_fill_color(200, 220, 255)
|
| 46 |
+
# Title
|
| 47 |
+
# self.cell(0, 6, 'Chapter %d : %s' % (num, label), 0, 1, 'L', 1)
|
| 48 |
+
self.cell(0, 6, "Test result:", 0, 1, "L", 1)
|
| 49 |
+
# Line break
|
| 50 |
+
self.ln(4)
|
| 51 |
+
|
| 52 |
+
def chapter_body(self, name):
|
| 53 |
+
|
| 54 |
+
# Set Chinese font
|
| 55 |
+
self.add_font("SimSun", "", "./fonts/SimSun.ttf", uni=True)
|
| 56 |
+
self.set_font("SimSun", "", 12)
|
| 57 |
+
# Output justified text
|
| 58 |
+
self.multi_cell(0, 5, name)
|
| 59 |
+
# Line break
|
| 60 |
+
self.ln()
|
| 61 |
+
self.cell(0, 5, "--------------------------------------")
|
| 62 |
+
|
| 63 |
+
def print_chapter(self, num, title, name):
|
| 64 |
+
self.add_page()
|
| 65 |
+
self.chapter_title(num, title)
|
| 66 |
+
self.chapter_body(name)
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
# pdf generation function
|
| 70 |
+
def pdf_generate(input_file, output_file, title_):
|
| 71 |
+
global title
|
| 72 |
+
|
| 73 |
+
title = title_
|
| 74 |
+
pdf = PDF()
|
| 75 |
+
pdf.set_title(title)
|
| 76 |
+
pdf.set_author("Zeng Yifu")
|
| 77 |
+
pdf.print_chapter(1, "A RUNAWAY REEF", input_file)
|
| 78 |
+
pdf.output(output_file)
|