AudioTranscribe / app.py
ZennyKenny's picture
Update app.py
b40af2a verified
raw
history blame
1.01 kB
import gradio as gr
from transformers import pipeline
# Load models
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base")
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# Function to process audio
def process_audio(audio_file):
# Step 1: Transcribe audio
transcription = transcriber(audio_file)["text"]
# Step 2: Summarize transcription
summary = summarizer(transcription, max_length=50, min_length=10, do_sample=False)[0]["summary_text"]
return transcription, summary
# Gradio Interface
interface = gr.Interface(
fn=process_audio,
inputs=gr.Audio(source="upload", type="filepath", label="Upload Audio File"),
outputs=[
gr.Textbox(label="Full Transcription"),
gr.Textbox(label="Summary")
],
title="Audio Transcription and Summarization",
description="Upload an audio file to get a full transcription and a brief summary of its content."
)
# Launch the interface
interface.launch()