File size: 5,484 Bytes
c9bfe98
 
 
 
 
 
 
 
aaaf2a4
905cbc7
818e485
c9bfe98
 
 
 
 
 
 
 
905cbc7
c9bfe98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
905cbc7
c9bfe98
 
905cbc7
c9bfe98
905cbc7
 
 
 
c9bfe98
 
 
 
905cbc7
c9bfe98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
905cbc7
0f28e05
 
c9bfe98
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image, ImageOps
# import cv2  # not needed anymore

from transformers import (
    Qwen2_5_VLForConditionalGeneration,
    AutoProcessor,
    TextIteratorStreamer,
)
from transformers.image_utils import load_image

# Optional docling imports (unused now but kept for easy re-enable)
# from docling_core.types.doc import DoclingDocument, DocTagsDocument

import re
import ast
import html

# ---------------------------
# Constants & device
# ---------------------------
MAX_MAX_NEW_TOKENS     = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# ---------------------------
# Load ONLY Typhoon OCR 20B
# ---------------------------
MODEL_ID = "scb10x/typhoon-ocr-20b"  # <- 20B model
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# ---------------------------
# (Optional) image helpers
# ---------------------------
def add_random_padding(image, min_percent=0.1, max_percent=0.10):
    image = image.convert("RGB")
    width, height = image.size
    pad_w_percent = random.uniform(min_percent, max_percent)
    pad_h_percent = random.uniform(min_percent, max_percent)
    pad_w = int(width * pad_w_percent)
    pad_h = int(height * pad_h_percent)
    corner_pixel = image.getpixel((0, 0))
    padded_image = ImageOps.expand(image, border=(pad_w, pad_h, pad_w, pad_h), fill=corner_pixel)
    return padded_image

def normalize_values(text, target_max=500):
    def normalize_list(values):
        max_value = max(values) if values else 1
        return [round((v / max_value) * target_max) for v in values]

    def process_match(match):
        num_list = ast.literal_eval(match.group(0))
        normalized = normalize_list(num_list)
        return "".join([f"<loc_{num}>" for num in normalized])

    pattern = r"\[([\d\.\s,]+)\]"
    return re.sub(pattern, process_match, text)

# ---------------------------
# Image generation only
# ---------------------------
@spaces.GPU
def generate_image(
    text: str,
    image: Image.Image,
    max_new_tokens: int = 2048,
    temperature: float = 0.1,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
):
    """Generate OCR/vision response for a single image with Typhoon OCR 20B."""
    if image is None:
        yield "Please upload an image."
        return

    images = [image]

    messages = [
        {
            "role": "user",
            "content": [{"type": "image"} for _ in images] + [
                {"type": "text", "text": text}
            ]
        }
    ]
    prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
    inputs = processor(text=prompt, images=images, return_tensors="pt").to(device)

    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {
        **inputs,
        "streamer": streamer,
        "max_new_tokens": max_new_tokens,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": top_k,
        "repetition_penalty": repetition_penalty,
    }

    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    buffer = ""
    for new_text in streamer:
        buffer += new_text.replace("<|im_end|>", "")
        yield buffer

# ---------------------------
# Minimal UI (Image only)
# ---------------------------
css = """
.submit-btn {
    background-color: #2980b9 !important;
    color: white !important;
}
.submit-btn:hover {
    background-color: #3498db !important;
}
"""

with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
    gr.Markdown("# **Typhoon OCR 20B**")

    with gr.Row():
        with gr.Column():
            image_query = gr.Textbox(label="Query Input", placeholder="e.g., \"OCR the image\" or task instruction…")
            image_upload = gr.Image(type="pil", label="Image")
            image_submit = gr.Button("Submit", elem_classes="submit-btn")

            with gr.Accordion("Advanced options", open=False):
                max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
                temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.1)
                top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
                top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
                repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)

        # Right column: ONLY output (no model info, no radios)
        with gr.Column():
            output = gr.Textbox(label="Output", interactive=False, lines=12, scale=2)

    image_submit.click(
        fn=generate_image,
        inputs=[image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=output
    )

if __name__ == "__main__":
    demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)