Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,020 Bytes
cbcd78b 52d8051 cbcd78b 52d8051 cbcd78b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import gradio as gr
from transformers import pipeline
from datasets import load_dataset
import pandas as pd
# Load the dataset from Hugging Face
ds = load_dataset('ZennyKenny/demo_customer_nps')
df = pd.DataFrame(ds['train'])
# Initialize the model pipeline
pipe = pipeline("text-generation", model="mistralai/Mistral-Small-24B-Base-2501")
# Function to classify customer comments
def classify_comments():
results = []
for comment in df['customer_comment']:
prompt = f"Classify this customer feedback: '{comment}' into one of five categories."
category = pipe(prompt, max_length=30)[0]['generated_text']
results.append(category)
df['comment_category'] = results
return df[['customer_comment', 'comment_category']].to_html(index=False)
# Gradio Interface
with gr.Blocks() as nps:
gr.Markdown("# NPS Comment Categorization")
classify_btn = gr.Button("Classify Comments")
output = gr.HTML()
classify_btn.click(fn=classify_comments, outputs=output)
nps.launch()
|