Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import spaces | |
| import os | |
| import torch | |
| import re | |
| from PIL import Image | |
| from diffusers import DiffusionPipeline, AutoencoderTiny | |
| from huggingface_hub import login | |
| from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images | |
| # Ensure image_preview dir exists | |
| os.makedirs("image_preview", exist_ok=True) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 2048 | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # ✅ Load model only once | |
| taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) | |
| pipe = DiffusionPipeline.from_pretrained( | |
| "black-forest-labs/FLUX.1-dev", | |
| torch_dtype=dtype, | |
| vae=taef1 | |
| ).to(device) | |
| pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) | |
| pipe.load_lora_weights("ZennyKenny/flux_lora_natalie-diffusion") | |
| def sanitize_filename(name): | |
| return re.sub(r"[^a-zA-Z0-9_-]", "_", name)[:80] | |
| def infer(user_token, prompt, seed=42, randomize_seed=False, width=1024, height=1024, | |
| guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): | |
| # Authenticate using user's token for this session | |
| login(token=user_token) | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| full_prompt = f"XTON {prompt}" | |
| for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( | |
| prompt=full_prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| output_type="pil", | |
| ): | |
| # Save low-quality JPG | |
| safe_name = sanitize_filename(prompt) | |
| img_path = f"image_preview/{safe_name}_{seed}.jpg" | |
| img.convert("RGB").save(img_path, "JPEG", quality=60) | |
| # Collect previews | |
| previews = [f"image_preview/{f}" for f in sorted(os.listdir("image_preview")) if f.endswith(".jpg")] | |
| return img, seed, previews | |
| examples = [ | |
| ["your_token_here", "a man walking in the forest"], | |
| ["your_token_here", "a viking ship sailing down a river"], | |
| ["your_token_here", "a woman resting by an open fire"], | |
| ["your_token_here", "a sword fight in a medieval village"] | |
| ] | |
| with gr.Blocks(css="style.css") as natalie_diffusion: | |
| with gr.Row(): | |
| with gr.Column(scale=1, elem_id="left-column"): | |
| gr.Markdown(""" | |
| # ХТОНЬ: Natalie LoRA Image Generator | |
| Generate images in the surreal style of artist [Natalie Kav](https://www.behance.net/nataliKav), adapted using a custom LoRA on the FLUX.1 [dev] model. | |
| > This space is designed for prototyping concept art for a forthcoming game called **ХТОНЬ**. All outputs are generated locally in the browser using GPU acceleration. | |
| """) | |
| hf_token_input = gr.Textbox( | |
| label="Your Hugging Face API Token", | |
| placeholder="Paste your token here", | |
| type="password" | |
| ) | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt...", | |
| container=False, | |
| ) | |
| run_button = gr.Button("🎨 Generate", scale=0) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) | |
| height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5) | |
| num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=28) | |
| result_example = gr.Image(visible=False) | |
| gr.Examples( | |
| examples=examples, | |
| fn=infer, | |
| inputs=[hf_token_input, prompt], | |
| outputs=[result_example, seed, gr.Gallery(visible=False)], | |
| cache_examples=False, | |
| ) | |
| with gr.Column(scale=1, elem_id="right-column"): | |
| result = gr.Image(label="", show_label=False, elem_id="generated-image") | |
| with gr.Column(): | |
| gr.Markdown("<h3 style='text-align:center;'>Generated Images Preview</h3>") | |
| gallery = gr.Gallery(label="", columns=4, height="auto", object_fit="cover") | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[hf_token_input, prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
| outputs=[result, seed, gallery], | |
| ) | |
| if __name__ == "__main__": | |
| natalie_diffusion.launch() | |