ZennyKenny commited on
Commit
e92ac40
·
verified ·
1 Parent(s): f1d52bb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -108
app.py CHANGED
@@ -1,165 +1,106 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
-
5
  import spaces
6
  import os
7
- from huggingface_hub import login
8
- from diffusers import StableDiffusionPipeline
9
  import torch
10
 
11
- # Authenticate with HF token
 
 
 
 
12
  hf_token = os.environ.get("HF_TOKEN")
13
  if hf_token:
14
- login(token=hf_token) # sets token for downstream usage
15
 
 
16
  device = "cuda" if torch.cuda.is_available() else "cpu"
17
- torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
18
 
19
- pipe = StableDiffusionPipeline.from_pretrained(
 
 
 
 
 
20
  "black-forest-labs/FLUX.1-dev",
21
- torch_dtype=torch_dtype,
22
- use_auth_token=hf_token # ← pass your token explicitly
23
- )
 
24
 
25
- pipe.unet.load_attn_procs("ZennyKenny/flux_lora_natalie-diffusion")
26
- pipe = pipe.to(device)
 
27
 
28
  MAX_SEED = np.iinfo(np.int32).max
29
- MAX_IMAGE_SIZE = 1024
30
-
31
- @spaces.GPU
32
- def infer(
33
- prompt,
34
- negative_prompt,
35
- seed,
36
- randomize_seed,
37
- width,
38
- height,
39
- guidance_scale,
40
- num_inference_steps,
41
- progress=gr.Progress(track_tqdm=True),
42
- ):
43
  if randomize_seed:
44
  seed = random.randint(0, MAX_SEED)
45
-
46
  generator = torch.Generator().manual_seed(seed)
47
 
48
- # Append "XTON" to the prompt
49
- prompt = "XTON " + prompt
50
 
51
- image = pipe(
52
  prompt=prompt,
53
- negative_prompt=negative_prompt,
54
  guidance_scale=guidance_scale,
55
  num_inference_steps=num_inference_steps,
56
  width=width,
57
  height=height,
58
  generator=generator,
59
- ).images[0]
60
-
61
- return image, seed
62
-
63
 
64
 
65
  examples = [
66
- "A man walking in a forest",
67
- "A viking ship sailing on a river at night",
68
- "A woman dancing in a tavern",
69
  ]
70
 
71
  css = """
72
  #col-container {
73
  margin: 0 auto;
74
- max-width: 640px;
75
  }
76
  """
77
 
78
- with gr.Blocks(css=css) as natalie_diffusion:
79
  with gr.Column(elem_id="col-container"):
80
- gr.Markdown(" # Text-to-Image Gradio Template")
81
 
82
  with gr.Row():
83
- prompt = gr.Text(
84
- label="Prompt",
85
- show_label=False,
86
- max_lines=1,
87
- placeholder="Enter your prompt",
88
- container=False,
89
- )
90
-
91
- run_button = gr.Button("Run", scale=0, variant="primary")
92
 
93
  result = gr.Image(label="Result", show_label=False)
94
 
95
  with gr.Accordion("Advanced Settings", open=False):
96
- negative_prompt = gr.Text(
97
- label="Negative prompt",
98
- max_lines=1,
99
- placeholder="Enter a negative prompt",
100
- visible=False,
101
- )
102
-
103
- seed = gr.Slider(
104
- label="Seed",
105
- minimum=0,
106
- maximum=MAX_SEED,
107
- step=1,
108
- value=0,
109
- )
110
-
111
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
112
 
113
  with gr.Row():
114
- width = gr.Slider(
115
- label="Width",
116
- minimum=256,
117
- maximum=MAX_IMAGE_SIZE,
118
- step=32,
119
- value=1024, # Replace with defaults that work for your model
120
- )
121
-
122
- height = gr.Slider(
123
- label="Height",
124
- minimum=256,
125
- maximum=MAX_IMAGE_SIZE,
126
- step=32,
127
- value=1024, # Replace with defaults that work for your model
128
- )
129
 
130
  with gr.Row():
131
- guidance_scale = gr.Slider(
132
- label="Guidance scale",
133
- minimum=0.0,
134
- maximum=10.0,
135
- step=0.1,
136
- value=0.0, # Replace with defaults that work for your model
137
- )
138
-
139
- num_inference_steps = gr.Slider(
140
- label="Number of inference steps",
141
- minimum=1,
142
- maximum=50,
143
- step=1,
144
- value=2, # Replace with defaults that work for your model
145
- )
146
-
147
- gr.Examples(examples=examples, inputs=[prompt])
148
  gr.on(
149
  triggers=[run_button.click, prompt.submit],
150
  fn=infer,
151
- inputs=[
152
- prompt,
153
- negative_prompt,
154
- seed,
155
- randomize_seed,
156
- width,
157
- height,
158
- guidance_scale,
159
- num_inference_steps,
160
- ],
161
  outputs=[result, seed],
162
  )
163
 
164
  if __name__ == "__main__":
165
- natalie_diffusion.launch()
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
 
4
  import spaces
5
  import os
 
 
6
  import torch
7
 
8
+ from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
9
+ from huggingface_hub import login
10
+ from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images
11
+
12
+ # Authenticate for gated repo access
13
  hf_token = os.environ.get("HF_TOKEN")
14
  if hf_token:
15
+ login(token=hf_token)
16
 
17
+ dtype = torch.bfloat16
18
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
19
 
20
+ # Load VAEs
21
+ taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
22
+ good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
23
+
24
+ # Load base model with TAEF1 injected
25
+ pipe = DiffusionPipeline.from_pretrained(
26
  "black-forest-labs/FLUX.1-dev",
27
+ torch_dtype=dtype,
28
+ token=hf_token,
29
+ vae=taef1
30
+ ).to(device)
31
 
32
+ # Inject method + apply LoRA
33
+ pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
34
+ pipe.load_lora_weights("ZennyKenny/flux_lora_natalie-diffusion")
35
 
36
  MAX_SEED = np.iinfo(np.int32).max
37
+ MAX_IMAGE_SIZE = 2048
38
+
39
+ @spaces.GPU(duration=75)
40
+ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
 
 
 
 
 
 
 
 
 
 
41
  if randomize_seed:
42
  seed = random.randint(0, MAX_SEED)
 
43
  generator = torch.Generator().manual_seed(seed)
44
 
45
+ # Prepend XTON
46
+ prompt = f"XTON {prompt}"
47
 
48
+ for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
49
  prompt=prompt,
 
50
  guidance_scale=guidance_scale,
51
  num_inference_steps=num_inference_steps,
52
  width=width,
53
  height=height,
54
  generator=generator,
55
+ output_type="pil",
56
+ good_vae=good_vae,
57
+ ):
58
+ yield img, seed
59
 
60
 
61
  examples = [
62
+ "a man walking a in the forest",
63
+ "a viking ship sailing down a river",
64
+ "a woman resting by an open fire",
65
  ]
66
 
67
  css = """
68
  #col-container {
69
  margin: 0 auto;
70
+ max-width: 520px;
71
  }
72
  """
73
 
74
+ with gr.Blocks(css=css) as demo:
75
  with gr.Column(elem_id="col-container"):
76
+ gr.Markdown("# FLUX.1 [Natalie LoRA]\nModel prompt-augmented with `XTON`, adapted from [FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev)")
77
 
78
  with gr.Row():
79
+ prompt = gr.Text(label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False)
80
+ run_button = gr.Button("Run", scale=0)
 
 
 
 
 
 
 
81
 
82
  result = gr.Image(label="Result", show_label=False)
83
 
84
  with gr.Accordion("Advanced Settings", open=False):
85
+ seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
87
 
88
  with gr.Row():
89
+ width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
90
+ height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
 
 
 
 
 
 
 
 
 
 
 
 
 
91
 
92
  with gr.Row():
93
+ guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5)
94
+ num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=28)
95
+
96
+ gr.Examples(examples=examples, fn=infer, inputs=[prompt], outputs=[result, seed], cache_examples="lazy")
97
+
 
 
 
 
 
 
 
 
 
 
 
 
98
  gr.on(
99
  triggers=[run_button.click, prompt.submit],
100
  fn=infer,
101
+ inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
 
 
 
 
 
 
 
 
 
102
  outputs=[result, seed],
103
  )
104
 
105
  if __name__ == "__main__":
106
+ demo.launch()