import gradio as gr import numpy as np import random import spaces import os import torch import re from PIL import Image from diffusers import DiffusionPipeline, AutoencoderTiny from huggingface_hub import login from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images # Ensure image_preview dir exists os.makedirs("image_preview", exist_ok=True) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" # ✅ DO NOT CHANGE: Working pipeline using taef1 taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) pipe = DiffusionPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1 ).to(device) pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) pipe.load_lora_weights("ZennyKenny/flux_lora_natalie-diffusion") def sanitize_filename(name): return re.sub(r"[^a-zA-Z0-9_-]", "_", name)[:80] @spaces.GPU(duration=75) def infer(user_token, prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): login(token=user_token) if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) full_prompt = f"XTON {prompt}" for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( prompt=full_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, output_type="pil", ): safe_name = sanitize_filename(prompt) img_path = f"image_preview/{safe_name}_{seed}.jpg" img.convert("RGB").save(img_path, "JPEG", quality=60) previews = [f"image_preview/{f}" for f in sorted(os.listdir("image_preview")) if f.endswith(".jpg")] return img, seed, previews # Wrapper to inject a fallback token if needed def infer_with_fallback_token(user_token, prompt, *args): if not user_token.strip(): user_token = "your_token_here" # Replace with a real test token for dev, not in production return infer(user_token, prompt, *args) # Prompt-only examples; token will be filled in by wrapper prompt_examples = [ "a man walking in the forest", "a viking ship sailing down a river", "a woman resting by an open fire", "a sword fight in a medieval village" ] with gr.Blocks(css="style.css") as natalie_diffusion: with gr.Row(): with gr.Column(scale=1, elem_id="left-column"): gr.Markdown(""" # ХТОНЬ: Natalie LoRA Image Generator Generate images in the surreal style of artist [Natalie Kav](https://www.behance.net/nataliKav), adapted using a custom LoRA on the FLUX.1 [dev] model. > This space is designed for prototyping concept art for a forthcoming game called **ХТОНЬ**. All outputs are generated locally in the browser using GPU acceleration. """) hf_token_input = gr.Textbox( label="Your Hugging Face API Token", placeholder="Paste your token here", type="password" ) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt...", container=False, ) run_button = gr.Button("🎨 Generate", scale=0) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) with gr.Row(): guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5) num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=28) result_example = gr.Image(visible=False) gr.Examples( examples=[[prompt] for prompt in prompt_examples], fn=lambda prompt: infer_with_fallback_token("", prompt), inputs=[prompt], outputs=[result_example, seed, gr.Gallery(visible=False)], cache_examples=False, ) with gr.Column(scale=1, elem_id="right-column"): result = gr.Image(label="", show_label=False, elem_id="generated-image") with gr.Column(): gr.Markdown("

Generated Images Preview

") gallery = gr.Gallery(label="", columns=4, height="auto", object_fit="cover") gr.on( triggers=[run_button.click, prompt.submit], fn=infer_with_fallback_token, inputs=[hf_token_input, prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs=[result, seed, gallery], ) if __name__ == "__main__": natalie_diffusion.launch()