Spaces:
Running
Running
| import os | |
| import gradio as gr | |
| from sqlalchemy import text | |
| from smolagents import tool, CodeAgent, HfApiModel | |
| import spaces | |
| # Import the persistent database | |
| from database import engine, receipts | |
| def sql_engine(query: str) -> str: | |
| """ | |
| Executes an SQL query on the 'receipts' table and returns formatted results. | |
| Args: | |
| query: The SQL query to execute. | |
| Returns: | |
| Query result as a formatted string. | |
| """ | |
| try: | |
| with engine.connect() as con: | |
| rows = con.execute(text(query)).fetchall() | |
| if not rows: | |
| return "No results found." | |
| # If query returns a single value (e.g., AVG, SUM, COUNT), return as a string | |
| if len(rows) == 1 and len(rows[0]) == 1: | |
| return str(rows[0][0]) # Convert numerical result to string | |
| # Convert query results into a clean, readable format | |
| return "\n".join([", ".join(map(str, row)) for row in rows]) | |
| except Exception as e: | |
| return f"Error: {str(e)}" | |
| def query_sql(user_query: str) -> str: | |
| """ | |
| Converts natural language input to an SQL query using CodeAgent | |
| and returns the execution results. | |
| Args: | |
| user_query: The user's request in natural language. | |
| Returns: | |
| The query result from the database as a formatted string. | |
| """ | |
| # Provide the AI with the correct schema and strict instructions | |
| schema_info = ( | |
| "The database has a table named 'receipts' with the following schema:\n" | |
| "- receipt_id (INTEGER, primary key)\n" | |
| "- customer_name (VARCHAR(16))\n" | |
| "- price (FLOAT)\n" | |
| "- tip (FLOAT)\n" | |
| "Generate a valid SQL SELECT query using ONLY these column names.\n" | |
| "DO NOT explain your reasoning, and DO NOT return anything other than the SQL query itself." | |
| ) | |
| # Generate SQL query using the provided schema | |
| generated_sql = agent.run(f"{schema_info} Convert this request into SQL: {user_query}") | |
| # Log the generated SQL for debugging | |
| print(f"Generated SQL: {generated_sql}") | |
| # Ensure we only execute valid SELECT queries | |
| if not generated_sql.strip().lower().startswith(("select", "show", "pragma")): | |
| return "Error: Only SELECT queries are allowed." | |
| # Execute the SQL query and return the result | |
| result = sql_engine(generated_sql) | |
| # Log the SQL query result | |
| print(f"SQL Query Result: {result}") | |
| # Ensure proper formatting based on content | |
| try: | |
| float_result = float(result) | |
| return f"{float_result:.2f}" # Format numbers to 2 decimal places | |
| except ValueError: | |
| return result # Return text results directly without modification | |
| def handle_query(user_input: str) -> str: | |
| """ | |
| Calls query_sql, captures the output, and directly returns it to the UI. | |
| Args: | |
| user_input: The user's natural language question. | |
| Returns: | |
| The SQL query result as a plain string to be displayed in the UI. | |
| """ | |
| return query_sql(user_input) # Directly return the processed result | |
| # Initialize CodeAgent to generate SQL queries from natural language | |
| agent = CodeAgent( | |
| tools=[sql_engine], # Ensure sql_engine is properly registered | |
| model=HfApiModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct"), | |
| ) | |
| # Define Gradio interface using handle_query instead of query_sql | |
| demo = gr.Interface( | |
| fn=handle_query, # Call handle_query to return the final SQL output | |
| inputs=gr.Textbox(label="Enter your query in plain English"), | |
| outputs=gr.Textbox(label="Query Result"), | |
| title="Natural Language to SQL Executor", | |
| description="Enter a plain English request, and the AI will generate an SQL query and return the results.", | |
| flagging_mode="never", | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(server_name="0.0.0.0", server_port=7860, share=True) | |