restructure (#12)
Browse files- move files to utils and delete unused functions (088f17977d6bff876be48027553ed613259218ba)
- app.py +1 -1
- app_debug.py +2 -2
- app_leaderboard.py +2 -2
- app_text_classification.py +20 -28
- isolated_env.py +1 -1
- utils.py +0 -29
- fetch_utils.py → utils/fetch_utils.py +0 -0
- io_utils.py → utils/io_utils.py +0 -0
- leaderboard.py → utils/leaderboard.py +0 -0
- pipe.py → utils/pipe.py +0 -0
- run_jobs.py → utils/run_jobs.py +3 -3
- text_classification.py → utils/text_classification.py +7 -211
- text_classification_ui_helpers.py → utils/ui_helpers.py +54 -23
- wordings.py → utils/wordings.py +16 -24
app.py
CHANGED
|
@@ -5,7 +5,7 @@ import gradio as gr
|
|
| 5 |
from app_debug import get_demo as get_demo_debug
|
| 6 |
from app_leaderboard import get_demo as get_demo_leaderboard
|
| 7 |
from app_text_classification import get_demo as get_demo_text_classification
|
| 8 |
-
from run_jobs import start_process_run_job, stop_thread
|
| 9 |
|
| 10 |
try:
|
| 11 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="green")) as demo:
|
|
|
|
| 5 |
from app_debug import get_demo as get_demo_debug
|
| 6 |
from app_leaderboard import get_demo as get_demo_leaderboard
|
| 7 |
from app_text_classification import get_demo as get_demo_text_classification
|
| 8 |
+
from utils.run_jobs import start_process_run_job, stop_thread
|
| 9 |
|
| 10 |
try:
|
| 11 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="green")) as demo:
|
app_debug.py
CHANGED
|
@@ -4,8 +4,8 @@ import html
|
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
|
| 7 |
-
import pipe
|
| 8 |
-
from io_utils import get_logs_file
|
| 9 |
|
| 10 |
LOG_PATH = "./tmp"
|
| 11 |
CONFIG_PATH = "./cicd/configs/"
|
|
|
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
|
| 7 |
+
import utils.pipe as pipe
|
| 8 |
+
from utils.io_utils import get_logs_file
|
| 9 |
|
| 10 |
LOG_PATH = "./tmp"
|
| 11 |
CONFIG_PATH = "./cicd/configs/"
|
app_leaderboard.py
CHANGED
|
@@ -5,10 +5,10 @@ import gradio as gr
|
|
| 5 |
import pandas as pd
|
| 6 |
import datetime
|
| 7 |
|
| 8 |
-
from fetch_utils import (check_dataset_and_get_config,
|
| 9 |
check_dataset_and_get_split)
|
| 10 |
|
| 11 |
-
import leaderboard
|
| 12 |
logger = logging.getLogger(__name__)
|
| 13 |
global update_time
|
| 14 |
update_time = datetime.datetime.fromtimestamp(0)
|
|
|
|
| 5 |
import pandas as pd
|
| 6 |
import datetime
|
| 7 |
|
| 8 |
+
from utils.fetch_utils import (check_dataset_and_get_config,
|
| 9 |
check_dataset_and_get_split)
|
| 10 |
|
| 11 |
+
import utils.leaderboard as leaderboard
|
| 12 |
logger = logging.getLogger(__name__)
|
| 13 |
global update_time
|
| 14 |
update_time = datetime.datetime.fromtimestamp(0)
|
app_text_classification.py
CHANGED
|
@@ -2,22 +2,21 @@ import uuid
|
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
-
from io_utils import read_scanners, write_scanners
|
| 6 |
-
from
|
| 7 |
get_related_datasets_from_leaderboard,
|
| 8 |
align_columns_and_show_prediction,
|
| 9 |
check_dataset,
|
|
|
|
| 10 |
precheck_model_ds_enable_example_btn,
|
| 11 |
try_submit,
|
|
|
|
| 12 |
write_column_mapping_to_config,
|
|
|
|
| 13 |
)
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
check_hf_token_validity,
|
| 18 |
-
HuggingFaceInferenceAPIResponse
|
| 19 |
-
)
|
| 20 |
-
from wordings import (
|
| 21 |
CONFIRM_MAPPING_DETAILS_MD,
|
| 22 |
INTRODUCTION_MD,
|
| 23 |
USE_INFERENCE_API_TIP,
|
|
@@ -30,7 +29,7 @@ MAX_FEATURES = 20
|
|
| 30 |
|
| 31 |
EXAMPLE_MODEL_ID = "cardiffnlp/twitter-roberta-base-sentiment-latest"
|
| 32 |
CONFIG_PATH = "./config.yaml"
|
| 33 |
-
|
| 34 |
|
| 35 |
def get_demo():
|
| 36 |
with gr.Row():
|
|
@@ -40,7 +39,7 @@ def get_demo():
|
|
| 40 |
)
|
| 41 |
with gr.Row():
|
| 42 |
model_id_input = gr.Textbox(
|
| 43 |
-
label="Hugging Face
|
| 44 |
placeholder=EXAMPLE_MODEL_ID + " (press enter to confirm)",
|
| 45 |
)
|
| 46 |
|
|
@@ -57,12 +56,12 @@ def get_demo():
|
|
| 57 |
dataset_split_input = gr.Dropdown(label="Dataset Split", visible=False, allow_custom_value=True)
|
| 58 |
|
| 59 |
with gr.Row():
|
| 60 |
-
first_line_ds = gr.DataFrame(label="Dataset
|
| 61 |
with gr.Row():
|
| 62 |
loading_status = gr.HTML(visible=True)
|
| 63 |
with gr.Row():
|
| 64 |
example_btn = gr.Button(
|
| 65 |
-
"Validate
|
| 66 |
visible=True,
|
| 67 |
variant="primary",
|
| 68 |
interactive=False,
|
|
@@ -104,7 +103,7 @@ def get_demo():
|
|
| 104 |
inference_token_info = gr.HTML(value=HF_TOKEN_INVALID_STYLED, visible=False)
|
| 105 |
|
| 106 |
inference_token.change(
|
| 107 |
-
|
| 108 |
inputs=[inference_token],
|
| 109 |
outputs=[inference_token_info],
|
| 110 |
)
|
|
@@ -160,6 +159,12 @@ def get_demo():
|
|
| 160 |
outputs=[dataset_config_input, dataset_split_input, loading_status]
|
| 161 |
)
|
| 162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
gr.on(
|
| 164 |
triggers=[label.change for label in column_mappings],
|
| 165 |
fn=write_column_mapping_to_config,
|
|
@@ -237,21 +242,6 @@ def get_demo():
|
|
| 237 |
outputs=[run_btn, logs, uid_label],
|
| 238 |
)
|
| 239 |
|
| 240 |
-
def enable_run_btn(run_inference, inference_token, model_id, dataset_id, dataset_config, dataset_split):
|
| 241 |
-
if not run_inference or inference_token == "":
|
| 242 |
-
return gr.update(interactive=False)
|
| 243 |
-
if model_id == "" or dataset_id == "" or dataset_config == "" or dataset_split == "":
|
| 244 |
-
return gr.update(interactive=False)
|
| 245 |
-
if not column_mapping_accordion.visible:
|
| 246 |
-
return gr.update(interactive=False)
|
| 247 |
-
_, prediction_response = get_example_prediction(
|
| 248 |
-
model_id, dataset_id, dataset_config, dataset_split, inference_token
|
| 249 |
-
)
|
| 250 |
-
if not isinstance(prediction_response, HuggingFaceInferenceAPIResponse):
|
| 251 |
-
gr.warning("Your HF token is invalid. Please check your token.")
|
| 252 |
-
return gr.update(interactive=False)
|
| 253 |
-
return gr.update(interactive=True)
|
| 254 |
-
|
| 255 |
gr.on(
|
| 256 |
triggers=[
|
| 257 |
run_inference.input,
|
|
@@ -260,6 +250,7 @@ def get_demo():
|
|
| 260 |
],
|
| 261 |
fn=enable_run_btn,
|
| 262 |
inputs=[
|
|
|
|
| 263 |
run_inference,
|
| 264 |
inference_token,
|
| 265 |
model_id_input,
|
|
@@ -274,6 +265,7 @@ def get_demo():
|
|
| 274 |
triggers=[label.input for label in column_mappings],
|
| 275 |
fn=enable_run_btn,
|
| 276 |
inputs=[
|
|
|
|
| 277 |
run_inference,
|
| 278 |
inference_token,
|
| 279 |
model_id_input,
|
|
|
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
+
from utils.io_utils import read_scanners, write_scanners
|
| 6 |
+
from utils.ui_helpers import (
|
| 7 |
get_related_datasets_from_leaderboard,
|
| 8 |
align_columns_and_show_prediction,
|
| 9 |
check_dataset,
|
| 10 |
+
show_hf_token_info,
|
| 11 |
precheck_model_ds_enable_example_btn,
|
| 12 |
try_submit,
|
| 13 |
+
empty_column_mapping,
|
| 14 |
write_column_mapping_to_config,
|
| 15 |
+
enable_run_btn,
|
| 16 |
)
|
| 17 |
|
| 18 |
+
import logging
|
| 19 |
+
from utils.wordings import (
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
CONFIRM_MAPPING_DETAILS_MD,
|
| 21 |
INTRODUCTION_MD,
|
| 22 |
USE_INFERENCE_API_TIP,
|
|
|
|
| 29 |
|
| 30 |
EXAMPLE_MODEL_ID = "cardiffnlp/twitter-roberta-base-sentiment-latest"
|
| 31 |
CONFIG_PATH = "./config.yaml"
|
| 32 |
+
logger = logging.getLogger(__name__)
|
| 33 |
|
| 34 |
def get_demo():
|
| 35 |
with gr.Row():
|
|
|
|
| 39 |
)
|
| 40 |
with gr.Row():
|
| 41 |
model_id_input = gr.Textbox(
|
| 42 |
+
label="Hugging Face Model id",
|
| 43 |
placeholder=EXAMPLE_MODEL_ID + " (press enter to confirm)",
|
| 44 |
)
|
| 45 |
|
|
|
|
| 56 |
dataset_split_input = gr.Dropdown(label="Dataset Split", visible=False, allow_custom_value=True)
|
| 57 |
|
| 58 |
with gr.Row():
|
| 59 |
+
first_line_ds = gr.DataFrame(label="Dataset Preview", visible=False)
|
| 60 |
with gr.Row():
|
| 61 |
loading_status = gr.HTML(visible=True)
|
| 62 |
with gr.Row():
|
| 63 |
example_btn = gr.Button(
|
| 64 |
+
"Validate Model & Dataset",
|
| 65 |
visible=True,
|
| 66 |
variant="primary",
|
| 67 |
interactive=False,
|
|
|
|
| 103 |
inference_token_info = gr.HTML(value=HF_TOKEN_INVALID_STYLED, visible=False)
|
| 104 |
|
| 105 |
inference_token.change(
|
| 106 |
+
fn=show_hf_token_info,
|
| 107 |
inputs=[inference_token],
|
| 108 |
outputs=[inference_token_info],
|
| 109 |
)
|
|
|
|
| 159 |
outputs=[dataset_config_input, dataset_split_input, loading_status]
|
| 160 |
)
|
| 161 |
|
| 162 |
+
gr.on(
|
| 163 |
+
triggers=[model_id_input.change, dataset_id_input.change, dataset_config_input.change],
|
| 164 |
+
fn=empty_column_mapping,
|
| 165 |
+
inputs=[uid_label]
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
gr.on(
|
| 169 |
triggers=[label.change for label in column_mappings],
|
| 170 |
fn=write_column_mapping_to_config,
|
|
|
|
| 242 |
outputs=[run_btn, logs, uid_label],
|
| 243 |
)
|
| 244 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
gr.on(
|
| 246 |
triggers=[
|
| 247 |
run_inference.input,
|
|
|
|
| 250 |
],
|
| 251 |
fn=enable_run_btn,
|
| 252 |
inputs=[
|
| 253 |
+
uid_label,
|
| 254 |
run_inference,
|
| 255 |
inference_token,
|
| 256 |
model_id_input,
|
|
|
|
| 265 |
triggers=[label.input for label in column_mappings],
|
| 266 |
fn=enable_run_btn,
|
| 267 |
inputs=[
|
| 268 |
+
uid_label,
|
| 269 |
run_inference,
|
| 270 |
inference_token,
|
| 271 |
model_id_input,
|
isolated_env.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import os
|
| 2 |
import subprocess
|
| 3 |
|
| 4 |
-
from io_utils import write_log_to_user_file
|
| 5 |
|
| 6 |
|
| 7 |
def prepare_venv(execution_id, deps):
|
|
|
|
| 1 |
import os
|
| 2 |
import subprocess
|
| 3 |
|
| 4 |
+
from utils.io_utils import write_log_to_user_file
|
| 5 |
|
| 6 |
|
| 7 |
def prepare_venv(execution_id, deps):
|
utils.py
DELETED
|
@@ -1,29 +0,0 @@
|
|
| 1 |
-
import sys
|
| 2 |
-
|
| 3 |
-
import yaml
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
# read scanners from yaml file
|
| 7 |
-
# return a list of scanners
|
| 8 |
-
def read_scanners(path):
|
| 9 |
-
scanners = []
|
| 10 |
-
with open(path, "r") as f:
|
| 11 |
-
config = yaml.load(f, Loader=yaml.FullLoader)
|
| 12 |
-
scanners = config.get("detectors", None)
|
| 13 |
-
return scanners
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
# convert a list of scanners to yaml file
|
| 17 |
-
def write_scanners(scanners):
|
| 18 |
-
with open("./scan_config.yaml", "w") as f:
|
| 19 |
-
# save scanners to detectors in yaml
|
| 20 |
-
yaml.dump({"detectors": scanners}, f)
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
# convert column mapping dataframe to json
|
| 24 |
-
def convert_column_mapping_to_json(df, label=""):
|
| 25 |
-
column_mapping = {}
|
| 26 |
-
column_mapping[label] = []
|
| 27 |
-
for _, row in df.iterrows():
|
| 28 |
-
column_mapping[label].append(row.tolist())
|
| 29 |
-
return column_mapping
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fetch_utils.py → utils/fetch_utils.py
RENAMED
|
File without changes
|
io_utils.py → utils/io_utils.py
RENAMED
|
File without changes
|
leaderboard.py → utils/leaderboard.py
RENAMED
|
File without changes
|
pipe.py → utils/pipe.py
RENAMED
|
File without changes
|
run_jobs.py → utils/run_jobs.py
RENAMED
|
@@ -6,7 +6,7 @@ import threading
|
|
| 6 |
import time
|
| 7 |
from pathlib import Path
|
| 8 |
|
| 9 |
-
import pipe
|
| 10 |
from app_env import (
|
| 11 |
HF_GSK_HUB_HF_TOKEN,
|
| 12 |
HF_GSK_HUB_KEY,
|
|
@@ -17,9 +17,9 @@ from app_env import (
|
|
| 17 |
HF_SPACE_ID,
|
| 18 |
HF_WRITE_TOKEN,
|
| 19 |
)
|
| 20 |
-
from io_utils import LOG_FILE, get_yaml_path, write_log_to_user_file
|
| 21 |
from isolated_env import prepare_venv
|
| 22 |
-
from leaderboard import LEADERBOARD
|
| 23 |
|
| 24 |
is_running = False
|
| 25 |
|
|
|
|
| 6 |
import time
|
| 7 |
from pathlib import Path
|
| 8 |
|
| 9 |
+
import utils.pipe as pipe
|
| 10 |
from app_env import (
|
| 11 |
HF_GSK_HUB_HF_TOKEN,
|
| 12 |
HF_GSK_HUB_KEY,
|
|
|
|
| 17 |
HF_SPACE_ID,
|
| 18 |
HF_WRITE_TOKEN,
|
| 19 |
)
|
| 20 |
+
from utils.io_utils import LOG_FILE, get_yaml_path, write_log_to_user_file
|
| 21 |
from isolated_env import prepare_venv
|
| 22 |
+
from utils.leaderboard import LEADERBOARD
|
| 23 |
|
| 24 |
is_running = False
|
| 25 |
|
text_classification.py → utils/text_classification.py
RENAMED
|
@@ -1,17 +1,14 @@
|
|
| 1 |
-
import json
|
| 2 |
import logging
|
| 3 |
|
| 4 |
import datasets
|
| 5 |
import huggingface_hub
|
| 6 |
-
import pandas as pd
|
| 7 |
-
from transformers import pipeline
|
| 8 |
import requests
|
| 9 |
import os
|
| 10 |
|
| 11 |
-
|
| 12 |
-
HF_WRITE_TOKEN = "HF_WRITE_TOKEN"
|
| 13 |
|
| 14 |
-
logger = logging.getLogger(
|
|
|
|
| 15 |
|
| 16 |
class HuggingFaceInferenceAPIResponse:
|
| 17 |
def __init__(self, message):
|
|
@@ -93,165 +90,6 @@ def preload_hf_inference_api(model_id):
|
|
| 93 |
hf_token = os.environ.get(HF_WRITE_TOKEN, default="")
|
| 94 |
hf_inference_api(model_id, hf_token, payload)
|
| 95 |
|
| 96 |
-
def check_model_pipeline(model_id):
|
| 97 |
-
try:
|
| 98 |
-
task = huggingface_hub.model_info(model_id).pipeline_tag
|
| 99 |
-
except Exception:
|
| 100 |
-
return None
|
| 101 |
-
|
| 102 |
-
try:
|
| 103 |
-
ppl = pipeline(task=task, model=model_id)
|
| 104 |
-
|
| 105 |
-
return ppl
|
| 106 |
-
except Exception:
|
| 107 |
-
return None
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
def text_classificaiton_match_label_case_unsensative(id2label_mapping, label):
|
| 111 |
-
for model_label in id2label_mapping.keys():
|
| 112 |
-
if model_label.upper() == label.upper():
|
| 113 |
-
return model_label, label
|
| 114 |
-
return None, label
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
def text_classification_map_model_and_dataset_labels(id2label, dataset_features):
|
| 118 |
-
id2label_mapping = {id2label[k]: None for k in id2label.keys()}
|
| 119 |
-
dataset_labels = None
|
| 120 |
-
for feature in dataset_features.values():
|
| 121 |
-
if not isinstance(feature, datasets.ClassLabel):
|
| 122 |
-
continue
|
| 123 |
-
if len(feature.names) != len(id2label_mapping.keys()):
|
| 124 |
-
continue
|
| 125 |
-
|
| 126 |
-
dataset_labels = feature.names
|
| 127 |
-
# Try to match labels
|
| 128 |
-
for label in feature.names:
|
| 129 |
-
if label in id2label_mapping.keys():
|
| 130 |
-
model_label = label
|
| 131 |
-
else:
|
| 132 |
-
# Try to find case unsensative
|
| 133 |
-
model_label, label = text_classificaiton_match_label_case_unsensative(
|
| 134 |
-
id2label_mapping, label
|
| 135 |
-
)
|
| 136 |
-
if model_label is not None:
|
| 137 |
-
id2label_mapping[model_label] = label
|
| 138 |
-
else:
|
| 139 |
-
print(f"Label {label} is not found in model labels")
|
| 140 |
-
|
| 141 |
-
return id2label_mapping, dataset_labels
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
"""
|
| 145 |
-
params:
|
| 146 |
-
column_mapping: dict
|
| 147 |
-
example: {
|
| 148 |
-
"text": "sentences",
|
| 149 |
-
"label": {
|
| 150 |
-
"label0": "LABEL_0",
|
| 151 |
-
"label1": "LABEL_1"
|
| 152 |
-
}
|
| 153 |
-
}
|
| 154 |
-
ppl: pipeline
|
| 155 |
-
"""
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
def check_column_mapping_keys_validity(column_mapping, ppl):
|
| 159 |
-
# get the element in all the list elements
|
| 160 |
-
column_mapping = json.loads(column_mapping)
|
| 161 |
-
if "data" not in column_mapping.keys():
|
| 162 |
-
return True
|
| 163 |
-
user_labels = set([pair[0] for pair in column_mapping["data"]])
|
| 164 |
-
model_labels = set([pair[1] for pair in column_mapping["data"]])
|
| 165 |
-
|
| 166 |
-
id2label = ppl.model.config.id2label
|
| 167 |
-
original_labels = set(id2label.values())
|
| 168 |
-
|
| 169 |
-
return user_labels == model_labels == original_labels
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
"""
|
| 173 |
-
params:
|
| 174 |
-
column_mapping: dict
|
| 175 |
-
dataset_features: dict
|
| 176 |
-
example: {
|
| 177 |
-
'text': Value(dtype='string', id=None),
|
| 178 |
-
'label': ClassLabel(names=['negative', 'neutral', 'positive'], id=None)
|
| 179 |
-
}
|
| 180 |
-
"""
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
def infer_text_input_column(column_mapping, dataset_features):
|
| 184 |
-
# Check whether we need to infer the text input column
|
| 185 |
-
infer_text_input_column = True
|
| 186 |
-
feature_map_df = None
|
| 187 |
-
|
| 188 |
-
if "text" in column_mapping.keys():
|
| 189 |
-
dataset_text_column = column_mapping["text"]
|
| 190 |
-
if dataset_text_column in dataset_features.keys():
|
| 191 |
-
infer_text_input_column = False
|
| 192 |
-
else:
|
| 193 |
-
logging.warning(f"Provided {dataset_text_column} is not in Dataset columns")
|
| 194 |
-
|
| 195 |
-
if infer_text_input_column:
|
| 196 |
-
# Try to retrieve one
|
| 197 |
-
candidates = [
|
| 198 |
-
f for f in dataset_features if dataset_features[f].dtype == "string"
|
| 199 |
-
]
|
| 200 |
-
feature_map_df = pd.DataFrame(
|
| 201 |
-
{"Dataset Features": [candidates[0]], "Model Input Features": ["text"]}
|
| 202 |
-
)
|
| 203 |
-
if len(candidates) > 0:
|
| 204 |
-
logging.debug(f"Candidates are {candidates}")
|
| 205 |
-
column_mapping["text"] = candidates[0]
|
| 206 |
-
|
| 207 |
-
return column_mapping, feature_map_df
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
"""
|
| 211 |
-
params:
|
| 212 |
-
column_mapping: dict
|
| 213 |
-
id2label_mapping: dict
|
| 214 |
-
example:
|
| 215 |
-
id2label_mapping: {
|
| 216 |
-
'negative': 'negative',
|
| 217 |
-
'neutral': 'neutral',
|
| 218 |
-
'positive': 'positive'
|
| 219 |
-
}
|
| 220 |
-
"""
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
def infer_output_label_column(
|
| 224 |
-
column_mapping, id2label_mapping, id2label, dataset_labels
|
| 225 |
-
):
|
| 226 |
-
# Check whether we need to infer the output label column
|
| 227 |
-
if "data" in column_mapping.keys():
|
| 228 |
-
if isinstance(column_mapping["data"], list):
|
| 229 |
-
# Use the column mapping passed by user
|
| 230 |
-
for user_label, model_label in column_mapping["data"]:
|
| 231 |
-
id2label_mapping[model_label] = user_label
|
| 232 |
-
elif None in id2label_mapping.values():
|
| 233 |
-
column_mapping["label"] = {i: None for i in id2label.keys()}
|
| 234 |
-
return column_mapping, None
|
| 235 |
-
|
| 236 |
-
if "data" not in column_mapping.keys():
|
| 237 |
-
# Column mapping should contain original model labels
|
| 238 |
-
column_mapping["label"] = {
|
| 239 |
-
str(i): id2label_mapping[label]
|
| 240 |
-
for i, label in zip(id2label.keys(), dataset_labels)
|
| 241 |
-
}
|
| 242 |
-
|
| 243 |
-
id2label_df = pd.DataFrame(
|
| 244 |
-
{
|
| 245 |
-
"Dataset Labels": dataset_labels,
|
| 246 |
-
"Model Prediction Labels": [
|
| 247 |
-
id2label_mapping[label] for label in dataset_labels
|
| 248 |
-
],
|
| 249 |
-
}
|
| 250 |
-
)
|
| 251 |
-
|
| 252 |
-
return column_mapping, id2label_df
|
| 253 |
-
|
| 254 |
-
|
| 255 |
def check_dataset_features_validity(d_id, config, split):
|
| 256 |
# We assume dataset is ok here
|
| 257 |
ds = datasets.load_dataset(d_id, config, split=split, trust_remote_code=True)
|
|
@@ -335,48 +173,6 @@ def get_sample_prediction(ppl, df, column_mapping, id2label_mapping):
|
|
| 335 |
return prediction_input, prediction_result
|
| 336 |
|
| 337 |
|
| 338 |
-
def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split):
|
| 339 |
-
# load dataset as pd DataFrame
|
| 340 |
-
# get features column from dataset
|
| 341 |
-
df, dataset_features = check_dataset_features_validity(d_id, config, split)
|
| 342 |
-
|
| 343 |
-
column_mapping, feature_map_df = infer_text_input_column(
|
| 344 |
-
column_mapping, dataset_features
|
| 345 |
-
)
|
| 346 |
-
if feature_map_df is None:
|
| 347 |
-
# dataset does not have any features
|
| 348 |
-
return None, None, None, None, None
|
| 349 |
-
|
| 350 |
-
# Retrieve all labels
|
| 351 |
-
id2label = ppl.model.config.id2label
|
| 352 |
-
|
| 353 |
-
# Infer labels
|
| 354 |
-
id2label_mapping, dataset_labels = text_classification_map_model_and_dataset_labels(
|
| 355 |
-
id2label, dataset_features
|
| 356 |
-
)
|
| 357 |
-
column_mapping, id2label_df = infer_output_label_column(
|
| 358 |
-
column_mapping, id2label_mapping, id2label, dataset_labels
|
| 359 |
-
)
|
| 360 |
-
if id2label_df is None:
|
| 361 |
-
# does not able to infer output label column
|
| 362 |
-
return column_mapping, None, None, None, feature_map_df
|
| 363 |
-
|
| 364 |
-
# Get a sample prediction
|
| 365 |
-
prediction_input, prediction_result = get_sample_prediction(
|
| 366 |
-
ppl, df, column_mapping, id2label_mapping
|
| 367 |
-
)
|
| 368 |
-
if prediction_result is None:
|
| 369 |
-
# does not able to get a sample prediction
|
| 370 |
-
return column_mapping, prediction_input, None, id2label_df, feature_map_df
|
| 371 |
-
|
| 372 |
-
return (
|
| 373 |
-
column_mapping,
|
| 374 |
-
prediction_input,
|
| 375 |
-
prediction_result,
|
| 376 |
-
id2label_df,
|
| 377 |
-
feature_map_df,
|
| 378 |
-
)
|
| 379 |
-
|
| 380 |
def strip_model_id_from_url(model_id):
|
| 381 |
if model_id.startswith("https://huggingface.co/"):
|
| 382 |
return "/".join(model_id.split("/")[-2])
|
|
@@ -387,9 +183,9 @@ def check_hf_token_validity(hf_token):
|
|
| 387 |
return False
|
| 388 |
if not isinstance(hf_token, str):
|
| 389 |
return False
|
| 390 |
-
# use
|
| 391 |
-
|
| 392 |
-
response =
|
| 393 |
-
if
|
| 394 |
return False
|
| 395 |
return True
|
|
|
|
|
|
|
| 1 |
import logging
|
| 2 |
|
| 3 |
import datasets
|
| 4 |
import huggingface_hub
|
|
|
|
|
|
|
| 5 |
import requests
|
| 6 |
import os
|
| 7 |
|
| 8 |
+
from app_env import HF_WRITE_TOKEN
|
|
|
|
| 9 |
|
| 10 |
+
logger = logging.getLogger(__name__)
|
| 11 |
+
AUTH_CHECK_URL = "https://huggingface.co/api/whoami-v2"
|
| 12 |
|
| 13 |
class HuggingFaceInferenceAPIResponse:
|
| 14 |
def __init__(self, message):
|
|
|
|
| 90 |
hf_token = os.environ.get(HF_WRITE_TOKEN, default="")
|
| 91 |
hf_inference_api(model_id, hf_token, payload)
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
def check_dataset_features_validity(d_id, config, split):
|
| 94 |
# We assume dataset is ok here
|
| 95 |
ds = datasets.load_dataset(d_id, config, split=split, trust_remote_code=True)
|
|
|
|
| 173 |
return prediction_input, prediction_result
|
| 174 |
|
| 175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
def strip_model_id_from_url(model_id):
|
| 177 |
if model_id.startswith("https://huggingface.co/"):
|
| 178 |
return "/".join(model_id.split("/")[-2])
|
|
|
|
| 183 |
return False
|
| 184 |
if not isinstance(hf_token, str):
|
| 185 |
return False
|
| 186 |
+
# use huggingface api to check the token
|
| 187 |
+
headers = {"Authorization": f"Bearer {hf_token}"}
|
| 188 |
+
response = requests.get(AUTH_CHECK_URL, headers=headers)
|
| 189 |
+
if response.status_code != 200:
|
| 190 |
return False
|
| 191 |
return True
|
text_classification_ui_helpers.py → utils/ui_helpers.py
RENAMED
|
@@ -7,18 +7,19 @@ import datasets
|
|
| 7 |
import gradio as gr
|
| 8 |
import pandas as pd
|
| 9 |
|
| 10 |
-
import leaderboard
|
| 11 |
-
from io_utils import read_column_mapping, write_column_mapping
|
| 12 |
-
from run_jobs import save_job_to_pipe
|
| 13 |
-
from text_classification import (
|
| 14 |
strip_model_id_from_url,
|
| 15 |
check_model_task,
|
| 16 |
preload_hf_inference_api,
|
| 17 |
get_example_prediction,
|
| 18 |
get_labels_and_features_from_dataset,
|
|
|
|
| 19 |
HuggingFaceInferenceAPIResponse,
|
| 20 |
)
|
| 21 |
-
from wordings import (
|
| 22 |
CHECK_CONFIG_OR_SPLIT_RAW,
|
| 23 |
CONFIRM_MAPPING_DETAILS_FAIL_RAW,
|
| 24 |
MAPPING_STYLED_ERROR_WARNING,
|
|
@@ -26,6 +27,7 @@ from wordings import (
|
|
| 26 |
UNMATCHED_MODEL_DATASET_STYLED_ERROR,
|
| 27 |
CHECK_LOG_SECTION_RAW,
|
| 28 |
get_styled_input,
|
|
|
|
| 29 |
)
|
| 30 |
import os
|
| 31 |
|
|
@@ -35,6 +37,9 @@ MAX_FEATURES = 20
|
|
| 35 |
ds_dict = None
|
| 36 |
ds_config = None
|
| 37 |
|
|
|
|
|
|
|
|
|
|
| 38 |
def get_related_datasets_from_leaderboard(model_id):
|
| 39 |
records = leaderboard.records
|
| 40 |
model_id = strip_model_id_from_url(model_id)
|
|
@@ -46,18 +51,14 @@ def get_related_datasets_from_leaderboard(model_id):
|
|
| 46 |
|
| 47 |
return gr.update(choices=datasets_unique, value="")
|
| 48 |
|
| 49 |
-
|
| 50 |
-
logger = logging.getLogger(__file__)
|
| 51 |
-
|
| 52 |
-
|
| 53 |
def check_dataset(dataset_id):
|
| 54 |
logger.info(f"Loading {dataset_id}")
|
| 55 |
try:
|
| 56 |
configs = datasets.get_dataset_config_names(dataset_id, trust_remote_code=True)
|
| 57 |
if len(configs) == 0:
|
| 58 |
return (
|
| 59 |
-
gr.update(),
|
| 60 |
-
gr.update(),
|
| 61 |
""
|
| 62 |
)
|
| 63 |
splits = datasets.get_dataset_split_names(
|
|
@@ -70,13 +71,18 @@ def check_dataset(dataset_id):
|
|
| 70 |
)
|
| 71 |
except Exception as e:
|
| 72 |
logger.warn(f"Check your dataset {dataset_id}: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
return (
|
| 74 |
-
gr.update(),
|
| 75 |
-
gr.update(),
|
| 76 |
""
|
| 77 |
)
|
| 78 |
|
| 79 |
-
|
|
|
|
| 80 |
|
| 81 |
def write_column_mapping_to_config(uid, *labels):
|
| 82 |
# TODO: Substitute 'text' with more features for zero-shot
|
|
@@ -95,7 +101,6 @@ def write_column_mapping_to_config(uid, *labels):
|
|
| 95 |
|
| 96 |
write_column_mapping(all_mappings, uid)
|
| 97 |
|
| 98 |
-
|
| 99 |
def export_mappings(all_mappings, key, subkeys, values):
|
| 100 |
if key not in all_mappings.keys():
|
| 101 |
all_mappings[key] = dict()
|
|
@@ -111,7 +116,6 @@ def export_mappings(all_mappings, key, subkeys, values):
|
|
| 111 |
all_mappings[key][subkey] = values[i % len(values)]
|
| 112 |
return all_mappings
|
| 113 |
|
| 114 |
-
|
| 115 |
def list_labels_and_features_from_dataset(ds_labels, ds_features, model_labels, uid):
|
| 116 |
all_mappings = read_column_mapping(uid)
|
| 117 |
# For flattened raw datasets with no labels
|
|
@@ -160,19 +164,20 @@ def list_labels_and_features_from_dataset(ds_labels, ds_features, model_labels,
|
|
| 160 |
|
| 161 |
return lables + features
|
| 162 |
|
| 163 |
-
|
| 164 |
def precheck_model_ds_enable_example_btn(
|
| 165 |
model_id, dataset_id, dataset_config, dataset_split
|
| 166 |
):
|
|
|
|
|
|
|
| 167 |
model_id = strip_model_id_from_url(model_id)
|
| 168 |
model_task = check_model_task(model_id)
|
| 169 |
preload_hf_inference_api(model_id)
|
| 170 |
if model_task is None or model_task != "text-classification":
|
| 171 |
gr.Warning(NOT_TEXT_CLASSIFICATION_MODEL_RAW)
|
| 172 |
-
return (gr.update(), gr.update(),"")
|
| 173 |
-
|
| 174 |
if dataset_config is None or dataset_split is None or len(dataset_config) == 0:
|
| 175 |
-
return (gr.update(), gr.update(), "")
|
| 176 |
|
| 177 |
try:
|
| 178 |
ds = datasets.load_dataset(dataset_id, dataset_config, trust_remote_code=True)
|
|
@@ -304,12 +309,31 @@ def align_columns_and_show_prediction(
|
|
| 304 |
def check_column_mapping_keys_validity(all_mappings):
|
| 305 |
if all_mappings is None:
|
| 306 |
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
| 307 |
-
return
|
| 308 |
|
| 309 |
if "labels" not in all_mappings.keys():
|
| 310 |
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
| 311 |
-
return
|
| 312 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 313 |
|
| 314 |
def construct_label_and_feature_mapping(all_mappings, ds_labels, ds_features):
|
| 315 |
label_mapping = {}
|
|
@@ -328,9 +352,16 @@ def construct_label_and_feature_mapping(all_mappings, ds_labels, ds_features):
|
|
| 328 |
feature_mapping = all_mappings["features"]
|
| 329 |
return label_mapping, feature_mapping
|
| 330 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 331 |
def try_submit(m_id, d_id, config, split, inference, inference_token, uid):
|
| 332 |
all_mappings = read_column_mapping(uid)
|
| 333 |
-
check_column_mapping_keys_validity(all_mappings)
|
|
|
|
| 334 |
|
| 335 |
# get ds labels and features again for alignment
|
| 336 |
ds = datasets.load_dataset(d_id, config, split=split, trust_remote_code=True)
|
|
|
|
| 7 |
import gradio as gr
|
| 8 |
import pandas as pd
|
| 9 |
|
| 10 |
+
import utils.leaderboard as leaderboard
|
| 11 |
+
from utils.io_utils import read_column_mapping, write_column_mapping
|
| 12 |
+
from utils.run_jobs import save_job_to_pipe
|
| 13 |
+
from utils.text_classification import (
|
| 14 |
strip_model_id_from_url,
|
| 15 |
check_model_task,
|
| 16 |
preload_hf_inference_api,
|
| 17 |
get_example_prediction,
|
| 18 |
get_labels_and_features_from_dataset,
|
| 19 |
+
check_hf_token_validity,
|
| 20 |
HuggingFaceInferenceAPIResponse,
|
| 21 |
)
|
| 22 |
+
from utils.wordings import (
|
| 23 |
CHECK_CONFIG_OR_SPLIT_RAW,
|
| 24 |
CONFIRM_MAPPING_DETAILS_FAIL_RAW,
|
| 25 |
MAPPING_STYLED_ERROR_WARNING,
|
|
|
|
| 27 |
UNMATCHED_MODEL_DATASET_STYLED_ERROR,
|
| 28 |
CHECK_LOG_SECTION_RAW,
|
| 29 |
get_styled_input,
|
| 30 |
+
get_dataset_fetch_error_raw,
|
| 31 |
)
|
| 32 |
import os
|
| 33 |
|
|
|
|
| 37 |
ds_dict = None
|
| 38 |
ds_config = None
|
| 39 |
|
| 40 |
+
logger = logging.getLogger(__file__)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
def get_related_datasets_from_leaderboard(model_id):
|
| 44 |
records = leaderboard.records
|
| 45 |
model_id = strip_model_id_from_url(model_id)
|
|
|
|
| 51 |
|
| 52 |
return gr.update(choices=datasets_unique, value="")
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
def check_dataset(dataset_id):
|
| 55 |
logger.info(f"Loading {dataset_id}")
|
| 56 |
try:
|
| 57 |
configs = datasets.get_dataset_config_names(dataset_id, trust_remote_code=True)
|
| 58 |
if len(configs) == 0:
|
| 59 |
return (
|
| 60 |
+
gr.update(visible=False),
|
| 61 |
+
gr.update(visible=False),
|
| 62 |
""
|
| 63 |
)
|
| 64 |
splits = datasets.get_dataset_split_names(
|
|
|
|
| 71 |
)
|
| 72 |
except Exception as e:
|
| 73 |
logger.warn(f"Check your dataset {dataset_id}: {e}")
|
| 74 |
+
if "doesn't exist" in str(e):
|
| 75 |
+
gr.Warning(get_dataset_fetch_error_raw(e))
|
| 76 |
+
if "forbidden" in str(e).lower(): # GSK-2770
|
| 77 |
+
gr.Warning(get_dataset_fetch_error_raw(e))
|
| 78 |
return (
|
| 79 |
+
gr.update(visible=False),
|
| 80 |
+
gr.update(visible=False),
|
| 81 |
""
|
| 82 |
)
|
| 83 |
|
| 84 |
+
def empty_column_mapping(uid):
|
| 85 |
+
write_column_mapping(None, uid)
|
| 86 |
|
| 87 |
def write_column_mapping_to_config(uid, *labels):
|
| 88 |
# TODO: Substitute 'text' with more features for zero-shot
|
|
|
|
| 101 |
|
| 102 |
write_column_mapping(all_mappings, uid)
|
| 103 |
|
|
|
|
| 104 |
def export_mappings(all_mappings, key, subkeys, values):
|
| 105 |
if key not in all_mappings.keys():
|
| 106 |
all_mappings[key] = dict()
|
|
|
|
| 116 |
all_mappings[key][subkey] = values[i % len(values)]
|
| 117 |
return all_mappings
|
| 118 |
|
|
|
|
| 119 |
def list_labels_and_features_from_dataset(ds_labels, ds_features, model_labels, uid):
|
| 120 |
all_mappings = read_column_mapping(uid)
|
| 121 |
# For flattened raw datasets with no labels
|
|
|
|
| 164 |
|
| 165 |
return lables + features
|
| 166 |
|
|
|
|
| 167 |
def precheck_model_ds_enable_example_btn(
|
| 168 |
model_id, dataset_id, dataset_config, dataset_split
|
| 169 |
):
|
| 170 |
+
if model_id == "" or dataset_id == "":
|
| 171 |
+
return (gr.update(interactive=False), gr.update(visible=False), "")
|
| 172 |
model_id = strip_model_id_from_url(model_id)
|
| 173 |
model_task = check_model_task(model_id)
|
| 174 |
preload_hf_inference_api(model_id)
|
| 175 |
if model_task is None or model_task != "text-classification":
|
| 176 |
gr.Warning(NOT_TEXT_CLASSIFICATION_MODEL_RAW)
|
| 177 |
+
return (gr.update(interactive=False), gr.update(visible=False), "")
|
| 178 |
+
|
| 179 |
if dataset_config is None or dataset_split is None or len(dataset_config) == 0:
|
| 180 |
+
return (gr.update(interactive=False), gr.update(visible=False), "")
|
| 181 |
|
| 182 |
try:
|
| 183 |
ds = datasets.load_dataset(dataset_id, dataset_config, trust_remote_code=True)
|
|
|
|
| 309 |
def check_column_mapping_keys_validity(all_mappings):
|
| 310 |
if all_mappings is None:
|
| 311 |
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
| 312 |
+
return False
|
| 313 |
|
| 314 |
if "labels" not in all_mappings.keys():
|
| 315 |
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
| 316 |
+
return False
|
| 317 |
|
| 318 |
+
return True
|
| 319 |
+
|
| 320 |
+
def enable_run_btn(uid, run_inference, inference_token, model_id, dataset_id, dataset_config, dataset_split):
|
| 321 |
+
if not run_inference or inference_token == "":
|
| 322 |
+
logger.warn("Inference API is not enabled")
|
| 323 |
+
return gr.update(interactive=False)
|
| 324 |
+
if model_id == "" or dataset_id == "" or dataset_config == "" or dataset_split == "":
|
| 325 |
+
logger.warn("Model id or dataset id is not selected")
|
| 326 |
+
return gr.update(interactive=False)
|
| 327 |
+
|
| 328 |
+
all_mappings = read_column_mapping(uid)
|
| 329 |
+
if not check_column_mapping_keys_validity(all_mappings):
|
| 330 |
+
logger.warn("Column mapping is not valid")
|
| 331 |
+
return gr.update(interactive=False)
|
| 332 |
+
|
| 333 |
+
if not check_hf_token_validity(inference_token):
|
| 334 |
+
logger.warn("HF token is not valid")
|
| 335 |
+
return gr.update(interactive=False)
|
| 336 |
+
return gr.update(interactive=True)
|
| 337 |
|
| 338 |
def construct_label_and_feature_mapping(all_mappings, ds_labels, ds_features):
|
| 339 |
label_mapping = {}
|
|
|
|
| 352 |
feature_mapping = all_mappings["features"]
|
| 353 |
return label_mapping, feature_mapping
|
| 354 |
|
| 355 |
+
def show_hf_token_info(token):
|
| 356 |
+
valid = check_hf_token_validity(token)
|
| 357 |
+
if not valid:
|
| 358 |
+
return gr.update(visible=True)
|
| 359 |
+
return gr.update(visible=False)
|
| 360 |
+
|
| 361 |
def try_submit(m_id, d_id, config, split, inference, inference_token, uid):
|
| 362 |
all_mappings = read_column_mapping(uid)
|
| 363 |
+
if not check_column_mapping_keys_validity(all_mappings):
|
| 364 |
+
return (gr.update(interactive=True), gr.update(visible=False))
|
| 365 |
|
| 366 |
# get ds labels and features again for alignment
|
| 367 |
ds = datasets.load_dataset(d_id, config, split=split, trust_remote_code=True)
|
wordings.py → utils/wordings.py
RENAMED
|
@@ -1,28 +1,28 @@
|
|
| 1 |
INTRODUCTION_MD = """
|
| 2 |
<h1 style="text-align: center;">
|
| 3 |
-
🐢Giskard Evaluator
|
| 4 |
</h1>
|
| 5 |
-
Welcome to Giskard Evaluator Space! Get
|
| 6 |
"""
|
| 7 |
CONFIRM_MAPPING_DETAILS_MD = """
|
| 8 |
<h1 style="text-align: center;">
|
| 9 |
Confirm Pre-processing Details
|
| 10 |
</h1>
|
| 11 |
-
|
| 12 |
"""
|
| 13 |
CONFIRM_MAPPING_DETAILS_FAIL_MD = """
|
| 14 |
<h1 style="text-align: center;">
|
| 15 |
Confirm Pre-processing Details
|
| 16 |
</h1>
|
| 17 |
-
|
| 18 |
"""
|
| 19 |
|
| 20 |
CONFIRM_MAPPING_DETAILS_FAIL_RAW = """
|
| 21 |
-
|
| 22 |
"""
|
| 23 |
|
| 24 |
CHECK_CONFIG_OR_SPLIT_RAW = """
|
| 25 |
-
Please check your dataset config or split.
|
| 26 |
"""
|
| 27 |
|
| 28 |
CHECK_LOG_SECTION_RAW = """
|
|
@@ -33,18 +33,18 @@ PREDICTION_SAMPLE_MD = """
|
|
| 33 |
<h1 style="text-align: center;">
|
| 34 |
Model Prediction Sample
|
| 35 |
</h1>
|
| 36 |
-
Here
|
| 37 |
"""
|
| 38 |
|
| 39 |
MAPPING_STYLED_ERROR_WARNING = """
|
| 40 |
<h3 style="text-align: center;color: orange; background-color: #fff0f3; border-radius: 8px; padding: 10px; ">
|
| 41 |
-
|
| 42 |
</h3>
|
| 43 |
"""
|
| 44 |
|
| 45 |
UNMATCHED_MODEL_DATASET_STYLED_ERROR = """
|
| 46 |
<h3 style="text-align: center;color: #fa5f5f; background-color: #fbe2e2; border-radius: 8px; padding: 10px; ">
|
| 47 |
-
Your model and dataset have different numbers of labels. Please double check your model and dataset.
|
| 48 |
</h3>
|
| 49 |
"""
|
| 50 |
|
|
@@ -53,30 +53,22 @@ NOT_TEXT_CLASSIFICATION_MODEL_RAW = """
|
|
| 53 |
"""
|
| 54 |
|
| 55 |
USE_INFERENCE_API_TIP = """
|
| 56 |
-
|
| 57 |
<a href="https://huggingface.co/docs/api-inference/detailed_parameters#text-classification-task">
|
| 58 |
Hugging Face Inference API
|
| 59 |
</a>
|
| 60 |
-
|
| 61 |
-
which requires your <a href="https://huggingface.co/settings/tokens">HF token</a>.
|
| 62 |
-
<br/>
|
| 63 |
-
Otherwise, an
|
| 64 |
-
<a href="https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.TextClassificationPipeline">
|
| 65 |
-
HF pipeline
|
| 66 |
-
</a>
|
| 67 |
-
will be created and run in this Space. It takes more time to get the result.
|
| 68 |
-
<br/>
|
| 69 |
-
<b>
|
| 70 |
-
Do not worry, your HF token is only used in this Space for your evaluation.
|
| 71 |
-
</b>
|
| 72 |
"""
|
| 73 |
|
| 74 |
HF_TOKEN_INVALID_STYLED= """
|
| 75 |
-
<
|
| 76 |
Your Hugging Face token is invalid. Please double check your token.
|
| 77 |
-
</
|
| 78 |
"""
|
| 79 |
|
|
|
|
|
|
|
|
|
|
| 80 |
def get_styled_input(input):
|
| 81 |
return f"""<h3 style="text-align: center;color: #4ca154; background-color: #e2fbe8; border-radius: 8px; padding: 10px; ">
|
| 82 |
Your model and dataset have been validated! <br /> Sample input: {input}
|
|
|
|
| 1 |
INTRODUCTION_MD = """
|
| 2 |
<h1 style="text-align: center;">
|
| 3 |
+
🐢Giskard Evaluator - Text Classification
|
| 4 |
</h1>
|
| 5 |
+
Welcome to the Giskard Evaluator Space! Get a model vulnerability report immediately by simply sharing your model and dataset id below.
|
| 6 |
"""
|
| 7 |
CONFIRM_MAPPING_DETAILS_MD = """
|
| 8 |
<h1 style="text-align: center;">
|
| 9 |
Confirm Pre-processing Details
|
| 10 |
</h1>
|
| 11 |
+
Make sure the output variable's labels and the input variable's name are accurately mapped across both the dataset and the model.
|
| 12 |
"""
|
| 13 |
CONFIRM_MAPPING_DETAILS_FAIL_MD = """
|
| 14 |
<h1 style="text-align: center;">
|
| 15 |
Confirm Pre-processing Details
|
| 16 |
</h1>
|
| 17 |
+
We're unable to automatically map the input variable's name and output variable's labels of your dataset with the model's. <b>Please manually check the mapping below.</b>
|
| 18 |
"""
|
| 19 |
|
| 20 |
CONFIRM_MAPPING_DETAILS_FAIL_RAW = """
|
| 21 |
+
We're unable to automatically map the input variable's name and output variable's labels of your dataset with the model's. <b>Please manually check the mapping below.</b>
|
| 22 |
"""
|
| 23 |
|
| 24 |
CHECK_CONFIG_OR_SPLIT_RAW = """
|
| 25 |
+
We're unanle to extract labels or features from your dataset. Please check your dataset config or split selection.
|
| 26 |
"""
|
| 27 |
|
| 28 |
CHECK_LOG_SECTION_RAW = """
|
|
|
|
| 33 |
<h1 style="text-align: center;">
|
| 34 |
Model Prediction Sample
|
| 35 |
</h1>
|
| 36 |
+
Here's a sample of your model's prediction on an example from the dataset.
|
| 37 |
"""
|
| 38 |
|
| 39 |
MAPPING_STYLED_ERROR_WARNING = """
|
| 40 |
<h3 style="text-align: center;color: orange; background-color: #fff0f3; border-radius: 8px; padding: 10px; ">
|
| 41 |
+
⚠️ We're unable to automatically map the input variable's name and output variable's labels of your dataset with the model's. <b>Please manually check the mapping below.</b>
|
| 42 |
</h3>
|
| 43 |
"""
|
| 44 |
|
| 45 |
UNMATCHED_MODEL_DATASET_STYLED_ERROR = """
|
| 46 |
<h3 style="text-align: center;color: #fa5f5f; background-color: #fbe2e2; border-radius: 8px; padding: 10px; ">
|
| 47 |
+
❌ Your model and dataset have different numbers of labels. Please double check your model and dataset.
|
| 48 |
</h3>
|
| 49 |
"""
|
| 50 |
|
|
|
|
| 53 |
"""
|
| 54 |
|
| 55 |
USE_INFERENCE_API_TIP = """
|
| 56 |
+
To speed up the evaluation, we recommend using the
|
| 57 |
<a href="https://huggingface.co/docs/api-inference/detailed_parameters#text-classification-task">
|
| 58 |
Hugging Face Inference API
|
| 59 |
</a>
|
| 60 |
+
. Please input your <a href="https://huggingface.co/settings/tokens">Hugging Face token</a> to do so.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
"""
|
| 62 |
|
| 63 |
HF_TOKEN_INVALID_STYLED= """
|
| 64 |
+
<p style="text-align: left;color: red; ">
|
| 65 |
Your Hugging Face token is invalid. Please double check your token.
|
| 66 |
+
</p>
|
| 67 |
"""
|
| 68 |
|
| 69 |
+
def get_dataset_fetch_error_raw(error):
|
| 70 |
+
return f"""Sorry you cannot use this dataset because {error}. Contact HF team to support this dataset."""
|
| 71 |
+
|
| 72 |
def get_styled_input(input):
|
| 73 |
return f"""<h3 style="text-align: center;color: #4ca154; background-color: #e2fbe8; border-radius: 8px; padding: 10px; ">
|
| 74 |
Your model and dataset have been validated! <br /> Sample input: {input}
|