File size: 3,720 Bytes
beb1eb8
d046ba6
 
 
 
 
60684f0
 
d046ba6
 
3ed16ee
d046ba6
60684f0
d046ba6
 
60684f0
 
d046ba6
60684f0
 
d046ba6
 
 
 
60684f0
d046ba6
 
 
 
60684f0
d046ba6
 
 
 
60684f0
d046ba6
 
 
 
 
 
f5078a2
d046ba6
60684f0
d046ba6
 
f5078a2
d046ba6
 
 
60684f0
 
 
 
 
d046ba6
60684f0
d046ba6
 
 
60684f0
d046ba6
60684f0
 
 
 
 
d046ba6
60684f0
d046ba6
 
 
60684f0
 
d046ba6
 
60684f0
beb1eb8
d046ba6
 
 
 
 
 
 
 
beb1eb8
 
60684f0
 
 
 
 
 
 
39cd847
60684f0
d046ba6
 
 
 
 
 
60684f0
d046ba6
 
f5078a2
d046ba6
 
 
60684f0
d046ba6
 
 
 
 
 
60684f0
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_community.tools.duckduckgo_search import DuckDuckGoSearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain_google_genai import ChatGoogleGenerativeAI

# .env laden (falls lokal)
load_dotenv()

# Google API Key aus Environment
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")

# --- Tools definieren ---
@tool
def multiply(a: int, b: int) -> int:
    """Multiplies two numbers."""
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Adds two numbers."""
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Subtracts two numbers."""
    return a - b

@tool
def divide(a: int, b: int) -> float:
    """Divides two numbers."""
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulo(a: int, b: int) -> int:
    """Returns the remainder after division."""
    return a % b

@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for a query and return up to 2 results."""
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}">\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ]
    )
    return {"wiki_results": formatted_search_docs}

@tool
def arxiv_search(query: str) -> str:
    """Search Arxiv for a query and return up to 3 results."""
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}">\n{doc.page_content[:1000]}\n</Document>'
            for doc in search_docs
        ]
    )
    return {"arxiv_results": formatted_search_docs}

@tool
def web_search(query: str) -> str:
    """Search DuckDuckGo for a query and return results."""
    search = DuckDuckGoSearchResults(max_results=5)
    return search.run(query)

# Tools-Liste
tools = [
    multiply,
    add,
    subtract,
    divide,
    modulo,
    wiki_search,
    arxiv_search,
    web_search,
]

# System Prompt
system_prompt = (
    "You are a highly accurate AI assistant. "
    "Use tools when needed. Be very concise and precise. "
    "Do not hallucinate information."
)
sys_msg = SystemMessage(content=system_prompt)

# --- Build Graph ---
def build_graph():
    llm = ChatGoogleGenerativeAI(
        model="gemini-2.0-flash",
        google_api_key=GOOGLE_API_KEY,
        temperature=0,
        max_output_tokens=2048,
        system_message=sys_msg,
    )
    llm_with_tools = llm.bind_tools(tools)

    def assistant(state: MessagesState):
        """Assistant Node"""
        return {"messages": [llm_with_tools.invoke(state["messages"])]}

    builder = StateGraph(MessagesState)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))
    builder.add_edge(START, "assistant")
    builder.add_conditional_edges("assistant", tools_condition)
    builder.add_edge("tools", "assistant")

    return builder.compile()

# --- Agent Executor für app.py ---
def agent_executor(question: str) -> str:
    graph = build_graph()
    messages = [HumanMessage(content=question)]
    result = graph.invoke({"messages": messages})
    return result["messages"][-1].content