File size: 3,736 Bytes
beb1eb8
d046ba6
 
 
 
74744c6
60684f0
 
d046ba6
 
3ed16ee
d046ba6
 
 
60684f0
d046ba6
74744c6
60684f0
d046ba6
c6338ed
d046ba6
 
60684f0
d046ba6
c6338ed
d046ba6
 
60684f0
d046ba6
c6338ed
d046ba6
 
60684f0
d046ba6
c6338ed
d046ba6
 
 
 
f5078a2
d046ba6
c6338ed
d046ba6
 
f5078a2
d046ba6
c6338ed
d046ba6
74744c6
 
d046ba6
74744c6
d046ba6
 
 
c6338ed
d046ba6
74744c6
 
d046ba6
74744c6
d046ba6
 
 
c6338ed
74744c6
 
 
 
 
 
 
beb1eb8
d046ba6
 
 
 
 
 
 
 
beb1eb8
 
60684f0
 
 
 
 
 
39cd847
d046ba6
 
 
 
 
 
60684f0
d046ba6
 
f5078a2
d046ba6
 
60684f0
d046ba6
 
 
 
 
 
60684f0
 
 
74744c6
60684f0
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from duckduckgo_search import DDGS
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain_google_genai import ChatGoogleGenerativeAI

load_dotenv()

GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")

# --- Tools ---
@tool
def multiply(a: int, b: int) -> int:
    """Multiplies two integers and returns the result."""
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Adds two integers and returns the result."""
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Subtracts the second integer from the first."""
    return a - b

@tool
def divide(a: int, b: int) -> float:
    """Divides the first integer by the second, returns float."""
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulo(a: int, b: int) -> int:
    """Returns the remainder of the division of two integers."""
    return a % b

@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for a given query and return up to 2 results formatted."""
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    formatted = "\n\n---\n\n".join(
        [f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}">\n{doc.page_content}\n</Document>' for doc in search_docs]
    )
    return {"wiki_results": formatted}

@tool
def arxiv_search(query: str) -> str:
    """Search Arxiv for a given query and return up to 3 results formatted."""
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()
    formatted = "\n\n---\n\n".join(
        [f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}">\n{doc.page_content[:1000]}\n</Document>' for doc in search_docs]
    )
    return {"arxiv_results": formatted}

@tool
def web_search(query: str) -> str:
    """Search DuckDuckGo (for websearch) for a query and return up to 5 links."""
    with DDGS() as ddgs:
        results = ddgs.text(query, max_results=5)
        if not results:
            return "No results found."
        return "\n\n".join(f"{r['title']}: {r['href']}" for r in results)

# --- Setup LLM und Tools ---
tools = [
    multiply,
    add,
    subtract,
    divide,
    modulo,
    wiki_search,
    arxiv_search,
    web_search,
]

system_prompt = (
    "You are a highly accurate AI assistant. "
    "Use tools when needed. Be very concise and precise. "
    "Do not hallucinate information."
)
sys_msg = SystemMessage(content=system_prompt)

def build_graph():
    llm = ChatGoogleGenerativeAI(
        model="gemini-2.0-flash",
        google_api_key=GOOGLE_API_KEY,
        temperature=0,
        max_output_tokens=2048,
        system_message=sys_msg,
    )
    llm_with_tools = llm.bind_tools(tools)

    def assistant(state: MessagesState):
        return {"messages": [llm_with_tools.invoke(state["messages"])]}

    builder = StateGraph(MessagesState)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))
    builder.add_edge(START, "assistant")
    builder.add_conditional_edges("assistant", tools_condition)
    builder.add_edge("tools", "assistant")

    return builder.compile()

# Agent Executor für app.py
def agent_executor(question: str) -> str:
    graph = build_graph()
    messages = [HumanMessage(content=question)]
    result = graph.invoke({"messages": messages})
    return result["messages"][-1].content