Spaces:
Runtime error
Runtime error
File size: 11,004 Bytes
beb1eb8 e8d1b6b 257cce5 3ed16ee 257cce5 e8d1b6b d046ba6 257cce5 60684f0 d046ba6 257cce5 e8d1b6b 60684f0 d046ba6 257cce5 d046ba6 60684f0 d046ba6 257cce5 d046ba6 60684f0 d046ba6 257cce5 d046ba6 60684f0 d046ba6 257cce5 d046ba6 f5078a2 d046ba6 257cce5 d046ba6 f5078a2 d046ba6 257cce5 d046ba6 257cce5 d046ba6 257cce5 d046ba6 257cce5 d046ba6 257cce5 e8d1b6b 257cce5 60684f0 f5078a2 257cce5 e8d1b6b 257cce5 60684f0 e8d1b6b 257cce5 e8d1b6b 60684f0 257cce5 60684f0 257cce5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
import os
import pandas as pd
from langgraph.graph import StateGraph, START, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.tools import tool
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.utilities.duckduckgo_search import DuckDuckGoSearchAPIWrapper
from langchain_core.messages import SystemMessage, HumanMessage
import requests
import tempfile
# Lade Umgebungsvariablen (Google API Key)
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
# === Tools definieren ===
GAIA_BASE_URL = "https://agents-course-unit4-scoring.hf.space"
@tool
def fetch_gaia_file(task_id: str) -> str:
"""
Download the file attached to a GAIA task and return the local file-path.
Args:
task_id: The GAIA task_id (string in the JSON payload).
Returns:
Absolute path to the downloaded temp-file.
"""
try:
url = f"{GAIA_BASE_URL}/files/{task_id}"
response = requests.get(url, timeout=20)
response.raise_for_status()
# Server liefert den echten Dateinamen im Header – fallback auf "download"
filename = (
response.headers.get("x-filename") or
response.headers.get("content-disposition", "download").split("filename=")[-1].strip('"')
)
if not filename:
filename = f"{task_id}.bin"
tmp_path = os.path.join(tempfile.gettempdir(), filename)
with open(tmp_path, "wb") as f:
f.write(response.content)
return tmp_path
except Exception as e:
return f"ERROR: could not download file for task {task_id}: {e}"
@tool
def parse_csv(file_path: str, query: str = "") -> str:
"""
Load a CSV file from `file_path` and optionally run a simple analysis query.
Args:
file_path: absolute path to a CSV file (from fetch_gaia_file)
query: optional natural-language instruction, e.g.
"sum of column Sales where Category != 'Drinks'"
Returns:
A concise string with the answer OR a preview of the dataframe
if no query given.
"""
try:
df = pd.read_csv(file_path)
# Auto-preview if kein query
if not query:
preview = df.head(5).to_markdown(index=False)
return f"CSV loaded. First rows:\n\n{preview}\n\nColumns: {', '.join(df.columns)}"
# Mini-query-engine (sehr simpel, reicht für Summen / Mittelwerte)
query_lc = query.lower()
if "sum" in query_lc:
# ermitteln, welche Spalte summiert werden soll
for col in df.columns:
if col.lower() in query_lc:
s = df[col]
if "where" in query_lc:
# naive Filter-Parsing: where <col> != 'Drinks'
cond_part = query_lc.split("where", 1)[1].strip()
# SEHR einfaches != oder == Parsing
if "!=" in cond_part:
key, val = [x.strip().strip("'\"") for x in cond_part.split("!=")]
s = df.loc[df[key] != val, col]
elif "==" in cond_part:
key, val = [x.strip().strip("'\"") for x in cond_part.split("==")]
s = df.loc[df[key] == val, col]
return str(round(s.sum(), 2))
# Fallback
return "Query type not supported by parse_csv."
except Exception as e:
return f"ERROR parsing CSV: {e}"
@tool
def parse_excel(file_path: str, query: str = "") -> str:
"""
Identisch zu parse_csv, nur für XLS/XLSX.
"""
try:
df = pd.read_excel(file_path)
if not query:
preview = df.head(5).to_markdown(index=False)
return f"Excel loaded. First rows:\n\n{preview}\n\nColumns: {', '.join(df.columns)}"
query_lc = query.lower()
if "sum" in query_lc:
for col in df.columns:
if col.lower() in query_lc:
s = df[col]
if "where" in query_lc:
cond_part = query_lc.split("where", 1)[1].strip()
if "!=" in cond_part:
key, val = [x.strip().strip("'\"") for x in cond_part.split("!=")]
s = df.loc[df[key] != val, col]
elif "==" in cond_part:
key, val = [x.strip().strip("'\"") for x in cond_part.split("==")]
s = df.loc[df[key] == val, col]
return str(round(s.sum(), 2))
return "Query type not supported by parse_excel."
except Exception as e:
return f"ERROR parsing Excel: {e}"
@tool
def transcribe_audio(file_path: str, language: str = "en") -> str:
"""
Transcribe an audio file (MP3/WAV/etc.) using Faster-Whisper.
Args:
file_path: absolute path to an audio file (from fetch_gaia_file)
language: ISO language code, default "en"
Returns:
Full transcription as plain text, or "ERROR …"
"""
try:
from faster_whisper import WhisperModel
# Tiny model reicht für kurze Sprachmemos, ~75 MB
model = WhisperModel("tiny", device="cpu", compute_type="int8")
segments, _ = model.transcribe(file_path, language=language)
transcript = " ".join(segment.text.strip() for segment in segments).strip()
if not transcript:
return "ERROR: transcription empty."
return transcript
except Exception as e:
return f"ERROR: audio transcription failed – {e}"
@tool
def multiply(a: int, b: int) -> int:
"""Multiplies two numbers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Adds two numbers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtracts two numbers."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divides two numbers."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulo(a: int, b: int) -> int:
"""Returns the remainder of dividing two numbers."""
return a % b
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return the result."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
return "\n\n".join(doc.page_content for doc in search_docs)
@tool
def arxiv_search(query: str) -> str:
"""Search Arxiv for academic papers about a query."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
return "\n\n".join(doc.page_content[:1000] for doc in search_docs)
@tool
def web_search(query: str) -> str:
"""Perform a DuckDuckGo web search."""
wrapper = DuckDuckGoSearchAPIWrapper(max_results=5)
results = wrapper.run(query)
return results
# === System Prompt definieren ===
system_prompt = SystemMessage(content=(
system_prompt = SystemMessage(
content=(
"You are a focused, factual AI agent competing on the GAIA evaluation.\n"
"\n"
"GENERAL RULES\n"
"-------------\n"
"1. Always try to answer every question.\n"
"2. If you are NOT 100 % certain, prefer using a TOOL.\n"
"3. Never invent facts.\n"
"\n"
"TOOLS\n"
"-----\n"
"- fetch_gaia_file(task_id): downloads any attachment for the current task.\n"
"- parse_csv(file_path, query): analyse CSV files.\n"
"- parse_excel(file_path, query): analyse Excel files.\n"
"- transcribe_audio(file_path): transcribe MP3 / WAV audio.\n"
"- wiki_search(query): query English Wikipedia.\n"
"- arxiv_search(query): query arXiv.\n"
"- web_search(query): DuckDuckGo web search.\n"
"- simple_calculator(operation,a,b): basic maths.\n"
"\n"
"WHEN TO USE WHICH TOOL\n"
"----------------------\n"
"・If the prompt or GAIA metadata mentions an *attached* file, FIRST call "
"fetch_gaia_file with the given task_id. Then:\n"
" • CSV → parse_csv\n"
" • XLS/XLSX → parse_excel\n"
" • MP3/WAV → transcribe_audio (language auto-detect is OK)\n"
" • Image → (currently unsupported) answer that image processing is unavailable\n"
"・If you need factual data (dates, numbers, names) → wiki_search or web_search.\n"
"・If you need a scientific paper → arxiv_search.\n"
"・If a numeric operation is required → simple_calculator.\n"
"\n"
"ERROR HANDLING\n"
"--------------\n"
"If a tool call returns a string that starts with \"ERROR:\", IMMEDIATELY think of "
"an alternative strategy: retry with a different tool or modified parameters. "
"Do not repeat the same failing call twice.\n"
"\n"
"OUTPUT FORMAT\n"
"-------------\n"
"Follow the exact format asked in the question (e.g. single word, CSV, comma-list). "
"Do not add extra commentary.\n"
)
)
))
# === LLM definieren ===
llm = ChatGoogleGenerativeAI(
model="gemini-2.0-flash",
google_api_key=GOOGLE_API_KEY,
temperature=0,
max_output_tokens=2048,
system_message=system_prompt,
)
# === Tools in LLM einbinden ===
tools = [
fetch_gaia_file,
parse_csv,
parse_excel,
transcribe_audio,
wiki_search,
arxiv_search,
web_search,
simple_calculator,
]
llm_with_tools = llm.bind_tools(tools)
def safe_llm_invoke(messages):
"""
Ruft LLM einmal auf. Wenn das Ergebnis mit ERROR beginnt,
ruft es genau EIN weiteres Mal auf – jetzt weiß das LLM,
dass der vorige Tool-Call fehlgeschlagen ist.
"""
max_attempts = 2
for attempt in range(max_attempts):
result = llm_with_tools.invoke(messages)
content = result.content if hasattr(result, "content") else ""
if "ERROR:" not in content:
return result
# Fehler: füge eine System-Korrektur hinzu und versuche erneut
messages.append(
SystemMessage(
content="Previous tool call returned an ERROR. "
"Try a different tool or revise the input."
)
)
# nach max_attempts immer noch Fehler → zurückgeben
return result
# === Nodes für LangGraph ===
def assistant(state: MessagesState):
"""
Assistant node mit eingebautem Retry bei Tool-Fehlern.
"""
result_msg = safe_llm_invoke(state["messages"])
return {"messages": [result_msg]}
# === LangGraph bauen ===
builder = StateGraph(MessagesState)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "assistant")
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
# === Agent Executor ===
agent_executor = builder.compile() |