Spaces:
Runtime error
Runtime error
File size: 8,820 Bytes
909bf64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
from typing import Dict, List, Tuple
import re
import tempfile
from pathlib import Path
import pandas as pd
import requests
from agent import GaiaAgent
from pandas import DataFrame
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
QUESTIONS_URL = f"{DEFAULT_API_URL}/questions"
SUBMIT_URL = f"{DEFAULT_API_URL}/submit"
FILE_PATH = f"{DEFAULT_API_URL}/files/"
# --- Helper Methods ---
def fetch_all_questions() -> Dict:
"""Fetches all questions from the specified API endpoint.
This function retrieves a list of questions from the API, handles potential errors
such as network issues, invalid responses, or empty question lists, and returns
the questions as a dictionary.
Returns:
Dict: A dictionary containing the questions data retrieved from the API.
Raises:
UserWarning: If there is an error fetching the questions, such as network issues,
invalid JSON response, or an empty question list. The exception message
provides details about the specific error encountered.
"""
print(f"Fetching questions from: {QUESTIONS_URL}")
response = requests.get(QUESTIONS_URL, timeout=15)
try:
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
raise UserWarning("Fetched questions list is empty or invalid format.")
print(f"Fetched {len(questions_data)} questions.")
return questions_data
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
raise UserWarning(f"Error fetching questions: {e}")
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
raise UserWarning(f"Error decoding server response for questions: {e}")
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
raise UserWarning(f"An unexpected error occurred fetching questions: {e}")
def submit_answers(submission_data: dict, results_log: list) -> Tuple[str, DataFrame]:
"""Submits answers to the scoring API and returns the submission status and results.
This function sends the provided answers to the scoring API, handles potential errors
such as network issues, server errors, or invalid responses, and returns a status
message indicating the success or failure of the submission, along with a DataFrame
containing the results log.
Args:
submission_data (dict): A dictionary containing the answers to be submitted.
Expected to have a structure compatible with the scoring API.
results_log (list): A list of dictionaries containing the results log.
This log is converted to a Pandas DataFrame and returned.
Returns:
Tuple[str, DataFrame]: A tuple containing:
- A status message (str) indicating the submission status and any relevant
information or error messages.
- A Pandas DataFrame containing the results log.
"""
try:
response = requests.post(SUBMIT_URL, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/"
f"{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
def run_agent(
gaia_agent: GaiaAgent, questions_data: List[Dict]
) -> Tuple[List[Dict], List[Dict]]:
"""Runs the agent on a list of questions and returns the results and answers.
This function iterates through a list of questions, runs the provided agent on each
question, and collects the results and answers. It handles potential errors during
agent execution and returns the results log and the answers payload.
Args:
gaia_agent (GaiaAgent): An instance of the GaiaAgent class, which is responsible for
generating answers to the questions.
questions_data (List[Dict]): A list of dictionaries, where each dictionary
represents a question and contains at least the 'task_id' and 'question' keys.
Returns:
Tuple[List[Dict], List[Dict]]: A tuple containing:
- A list of dictionaries representing the results log, where each dictionary
contains the 'Task ID', 'Question', and 'Submitted Answer'.
- A list of dictionaries representing the answers payload, where each dictionary
contains the 'task_id' and 'submitted_answer'.
"""
results_log = []
answers_payload = []
print(f"🚀 Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
question_text = process_file(task_id, question_text)
if not task_id or question_text is None:
print(f"⚠️ Skipping invalid item (missing task_id or question): {item}")
continue
try:
submitted_answer = gaia_agent(task_id, question_text)
answers_payload.append(
{"task_id": task_id, "submitted_answer": submitted_answer}
)
except Exception as e:
print(f"❌ Error running agent on task {task_id}: {e}")
submitted_answer = f"AGENT ERROR: {e}"
results_log.append(
{
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer,
}
)
return results_log, answers_payload
def process_file(task_id: str, question_text: str) -> str:
"""
Attempt to download a file associated with a task from the API.
- If the file exists (HTTP 200), it is saved to a temp directory and the local file path is returned.
- If no file is found (HTTP 404), returns None.
- For all other HTTP errors, the exception is propagated to the caller.
"""
file_url = f"{FILE_PATH}{task_id}"
try:
response = requests.get(file_url, timeout=30)
response.raise_for_status()
except requests.exceptions.RequestException as exc:
print(f"Exception in download_file>> {str(exc)}")
return question_text # Unable to get the file
# Determine filename from 'Content-Disposition' header, fallback to task_id
content_disposition = response.headers.get("content-disposition", "")
filename = task_id
match = re.search(r'filename="([^"]+)"', content_disposition)
if match:
filename = match.group(1)
# Save file in a temp directory
temp_storage_dir = Path(tempfile.gettempdir()) / "gaia_cached_files"
temp_storage_dir.mkdir(parents=True, exist_ok=True)
file_path = temp_storage_dir / filename
file_path.write_bytes(response.content)
return (
f"{question_text}\n\n"
f"---\n"
f"A file was downloaded for this task and saved locally at:\n"
f"{str(file_path)}\n"
f"---\n\n"
) |