Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,145 +1,102 @@
|
|
1 |
-
# app.py –
|
2 |
-
#
|
3 |
-
import os
|
4 |
-
import gradio as gr
|
5 |
-
import
|
6 |
-
import
|
7 |
|
8 |
-
from agent import agent_executor # dein LangGraph-Agent
|
9 |
-
from langchain_core.messages import HumanMessage # NEU: benötigt für llm_input
|
10 |
|
11 |
-
|
12 |
-
# (Keep Constants as is)
|
13 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
14 |
|
15 |
|
16 |
-
#
|
17 |
-
#
|
18 |
-
#
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
def __call__(self, llm_input: dict) -> str:
|
25 |
-
try:
|
26 |
-
result = agent_executor.invoke(llm_input) # LangGraph ausführen
|
27 |
-
answer = result["messages"][-1].content
|
28 |
-
return answer.strip()
|
29 |
-
except Exception as e:
|
30 |
-
print(f"Agent error: {e}")
|
31 |
-
return "I don't know."
|
32 |
-
|
33 |
-
|
34 |
-
# ---------------------------------------------------------------------------
|
35 |
-
# GAIA-Runner: Fragen holen → Agent laufen lassen → Ergebnis submitten
|
36 |
-
# ---------------------------------------------------------------------------
|
37 |
-
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
38 |
-
"""Fetch GAIA questions, run agent, submit answers."""
|
39 |
-
space_id = os.getenv("SPACE_ID")
|
40 |
-
|
41 |
-
if profile:
|
42 |
-
username = f"{profile.username}"
|
43 |
-
print(f"User logged in: {username}")
|
44 |
-
else:
|
45 |
-
print("User not logged in.")
|
46 |
-
return "Please Login to Hugging Face with the button.", None
|
47 |
-
|
48 |
-
api_url = DEFAULT_API_URL
|
49 |
-
questions_url = f"{api_url}/questions"
|
50 |
-
submit_url = f"{api_url}/submit"
|
51 |
-
|
52 |
-
# Agent instanziieren
|
53 |
try:
|
54 |
-
|
|
|
55 |
except Exception as e:
|
56 |
-
return f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
59 |
-
print(agent_code)
|
60 |
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
try:
|
63 |
-
|
64 |
-
response.raise_for_status()
|
65 |
-
questions_data = response.json()
|
66 |
-
if not questions_data:
|
67 |
-
return "Fetched questions list is empty or invalid format.", None
|
68 |
-
print(f"Fetched {len(questions_data)} questions.")
|
69 |
except Exception as e:
|
70 |
return f"Error fetching questions: {e}", None
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
)
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
"Submitted Answer": f"AGENT ERROR: {e}"}
|
98 |
-
)
|
99 |
-
|
100 |
-
if not answers_payload:
|
101 |
-
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
102 |
-
|
103 |
-
# Submission
|
104 |
-
submission_data = {
|
105 |
-
"username": username.strip(),
|
106 |
-
"agent_code": agent_code,
|
107 |
-
"answers": answers_payload,
|
108 |
}
|
109 |
try:
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
f"Submission Successful!\n"
|
115 |
-
f"User: {result_data.get('username')}\n"
|
116 |
-
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
117 |
-
f"({result_data.get('correct_count', '?')}/"
|
118 |
-
f"{result_data.get('total_attempted', '?')} correct)\n"
|
119 |
-
f"Message: {result_data.get('message', 'No message received.')}"
|
120 |
)
|
121 |
-
return final_status, pd.DataFrame(results_log)
|
122 |
-
|
123 |
except Exception as e:
|
124 |
-
|
125 |
-
return status_message, pd.DataFrame(results_log)
|
126 |
|
|
|
127 |
|
128 |
-
# ---------------------------------------------------------------------------
|
129 |
-
# Gradio-UI (unverändert)
|
130 |
-
# ---------------------------------------------------------------------------
|
131 |
-
with gr.Blocks() as demo:
|
132 |
-
gr.Markdown("# Basic Agent Evaluation Runner")
|
133 |
|
|
|
|
|
|
|
|
|
|
|
134 |
gr.LoginButton()
|
135 |
-
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
140 |
|
141 |
-
|
142 |
-
outputs=[status_output, results_table])
|
143 |
|
144 |
if __name__ == "__main__":
|
145 |
demo.launch(debug=True, share=False)
|
|
|
1 |
+
# app.py – async + progress, keine Cache-Logik
|
2 |
+
# ------------------------------------------------
|
3 |
+
import os, asyncio, concurrent.futures, functools
|
4 |
+
import gradio as gr, requests, pandas as pd
|
5 |
+
from langchain_core.messages import HumanMessage
|
6 |
+
from agent import agent_executor # dein LangGraph-Agent
|
7 |
|
|
|
|
|
8 |
|
|
|
|
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
+
MAX_PAR_TASKS = 5 # wie viele Fragen parallel laufen
|
11 |
|
12 |
|
13 |
+
# ------------------------------------------------------------------
|
14 |
+
# Sync-Wrapper um den Agent
|
15 |
+
# ------------------------------------------------------------------
|
16 |
+
def run_agent_sync(task_id: str, question: str) -> str:
|
17 |
+
llm_input = {
|
18 |
+
"messages": [HumanMessage(content=question)],
|
19 |
+
"task_id": task_id,
|
20 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
try:
|
22 |
+
result = agent_executor.invoke(llm_input)
|
23 |
+
return result["messages"][-1].content.strip()
|
24 |
except Exception as e:
|
25 |
+
return f"AGENT ERROR: {e}"
|
26 |
+
|
27 |
+
|
28 |
+
async def run_agent_async(executor, task_id: str, question: str) -> str:
|
29 |
+
loop = asyncio.get_event_loop()
|
30 |
+
return await loop.run_in_executor(
|
31 |
+
executor, functools.partial(run_agent_sync, task_id, question)
|
32 |
+
)
|
33 |
|
|
|
|
|
34 |
|
35 |
+
# ------------------------------------------------------------------
|
36 |
+
# Haupt-Callback (async) – holt Fragen, verarbeitet parallel
|
37 |
+
# ------------------------------------------------------------------
|
38 |
+
async def run_and_submit_all(profile: gr.OAuthProfile | None, progress=gr.Progress()):
|
39 |
+
if not profile:
|
40 |
+
return "Please login with your HF account.", None
|
41 |
+
username = profile.username
|
42 |
+
|
43 |
+
# 1) GAIA-Fragen holen
|
44 |
+
q_url = f"{DEFAULT_API_URL}/questions"
|
45 |
try:
|
46 |
+
q_data = requests.get(q_url, timeout=15).json()
|
|
|
|
|
|
|
|
|
|
|
47 |
except Exception as e:
|
48 |
return f"Error fetching questions: {e}", None
|
49 |
|
50 |
+
progress(0, desc=f"Fetched {len(q_data)} questions – processing …")
|
51 |
+
|
52 |
+
# 2) Parallel ausführen
|
53 |
+
answers, log_rows = [], []
|
54 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=MAX_PAR_TASKS) as ex:
|
55 |
+
tasks = [
|
56 |
+
run_agent_async(ex, itm["task_id"], itm["question"])
|
57 |
+
for itm in q_data
|
58 |
+
]
|
59 |
+
for i, coro in enumerate(asyncio.as_completed(tasks), 1):
|
60 |
+
answer = await coro
|
61 |
+
task_id = q_data[i-1]["task_id"]
|
62 |
+
question = q_data[i-1]["question"]
|
63 |
+
|
64 |
+
answers.append({"task_id": task_id, "submitted_answer": answer})
|
65 |
+
log_rows.append({"Task ID": task_id, "Question": question, "Answer": answer})
|
66 |
+
|
67 |
+
progress(i / len(q_data), desc=f"{i}/{len(q_data)} done")
|
68 |
+
|
69 |
+
# 3) Antworten submitten
|
70 |
+
submit_url = f"{DEFAULT_API_URL}/submit"
|
71 |
+
payload = {
|
72 |
+
"username": username,
|
73 |
+
"agent_code": f"https://huggingface.co/spaces/{os.getenv('SPACE_ID')}/tree/main",
|
74 |
+
"answers": answers,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
}
|
76 |
try:
|
77 |
+
res = requests.post(submit_url, json=payload, timeout=60).json()
|
78 |
+
status = (
|
79 |
+
f"Submission OK – Score: {res.get('score','?')} % "
|
80 |
+
f"({res.get('correct_count','?')}/{res.get('total_attempted','?')})"
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
)
|
|
|
|
|
82 |
except Exception as e:
|
83 |
+
status = f"Submission failed: {e}"
|
|
|
84 |
|
85 |
+
return status, pd.DataFrame(log_rows)
|
86 |
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
# ------------------------------------------------------------------
|
89 |
+
# Gradio-UI
|
90 |
+
# ------------------------------------------------------------------
|
91 |
+
with gr.Blocks() as demo:
|
92 |
+
gr.Markdown("# Fast GAIA Agent Runner (Async + Progress)")
|
93 |
gr.LoginButton()
|
94 |
+
run_btn = gr.Button("Run & Submit")
|
95 |
|
96 |
+
out_status = gr.Textbox(label="Status / Score", lines=3, interactive=False)
|
97 |
+
out_table = gr.DataFrame(label="Answers", wrap=True)
|
|
|
98 |
|
99 |
+
run_btn.click(run_and_submit_all, outputs=[out_status, out_table])
|
|
|
100 |
|
101 |
if __name__ == "__main__":
|
102 |
demo.launch(debug=True, share=False)
|